14L 13s
↖ 13L 12s | ↑ 14L 12s | 15L 12s ↗ |
← 13L 13s | 14L 13s | 15L 13s → |
↙ 13L 14s | ↓ 14L 14s | 15L 14s ↘ |
┌╥╥┬╥┬╥┬╥┬╥┬╥┬╥┬╥┬╥┬╥┬╥┬╥┬╥┬┐ │║║│║│║│║│║│║│║│║│║│║│║│║│║││ │││││││││││││││││││││││││││││ └┴┴┴┴┴┴┴┴┴┴┴┴┴┴┴┴┴┴┴┴┴┴┴┴┴┴┴┘
sLsLsLsLsLsLsLsLsLsLsLsLsLL
14L 13s is a 2/1-equivalent (octave-equivalent) moment of symmetry scale containing 14 large steps and 13 small steps, repeating every octave. 14L 13s is related to 1L 9s, expanding it by 17 tones. Generators that produce this scale range from 1111.1 ¢ to 1114.3 ¢, or from 85.7 ¢ to 88.9 ¢.
The harmonic entropy minimum for this scale has +8 dark generators equal 3/2, which is approximately 41edo.
Scale properties
- This article uses TAMNAMS conventions for the names of this scale's intervals and scale degrees. The use of 1-indexed ordinal names is reserved for diatonic interval categories.
Intervals
The intervals of 14L 13s are named after the number of mossteps (L and s) they subtend. Each interval, apart from the root and octave (perfect 0-mosstep and perfect 27-mosstep), has two varieties, or sizes, each. Interval varieties are named major and minor for the large and small sizes, respectively, and augmented, perfect, and diminished for the scale's generators.
Intervals | Steps subtended |
Range in cents | ||
---|---|---|---|---|
Generic | Specific | Abbrev. | ||
0-mosstep | Perfect 0-mosstep | P0ms | 0 | 0.0 ¢ |
1-mosstep | Minor 1-mosstep | m1ms | s | 0.0 ¢ to 44.4 ¢ |
Major 1-mosstep | M1ms | L | 44.4 ¢ to 85.7 ¢ | |
2-mosstep | Perfect 2-mosstep | P2ms | L + s | 85.7 ¢ to 88.9 ¢ |
Augmented 2-mosstep | A2ms | 2L | 88.9 ¢ to 171.4 ¢ | |
3-mosstep | Minor 3-mosstep | m3ms | L + 2s | 85.7 ¢ to 133.3 ¢ |
Major 3-mosstep | M3ms | 2L + s | 133.3 ¢ to 171.4 ¢ | |
4-mosstep | Minor 4-mosstep | m4ms | 2L + 2s | 171.4 ¢ to 177.8 ¢ |
Major 4-mosstep | M4ms | 3L + s | 177.8 ¢ to 257.1 ¢ | |
5-mosstep | Minor 5-mosstep | m5ms | 2L + 3s | 171.4 ¢ to 222.2 ¢ |
Major 5-mosstep | M5ms | 3L + 2s | 222.2 ¢ to 257.1 ¢ | |
6-mosstep | Minor 6-mosstep | m6ms | 3L + 3s | 257.1 ¢ to 266.7 ¢ |
Major 6-mosstep | M6ms | 4L + 2s | 266.7 ¢ to 342.9 ¢ | |
7-mosstep | Minor 7-mosstep | m7ms | 3L + 4s | 257.1 ¢ to 311.1 ¢ |
Major 7-mosstep | M7ms | 4L + 3s | 311.1 ¢ to 342.9 ¢ | |
8-mosstep | Minor 8-mosstep | m8ms | 4L + 4s | 342.9 ¢ to 355.6 ¢ |
Major 8-mosstep | M8ms | 5L + 3s | 355.6 ¢ to 428.6 ¢ | |
9-mosstep | Minor 9-mosstep | m9ms | 4L + 5s | 342.9 ¢ to 400.0 ¢ |
Major 9-mosstep | M9ms | 5L + 4s | 400.0 ¢ to 428.6 ¢ | |
10-mosstep | Minor 10-mosstep | m10ms | 5L + 5s | 428.6 ¢ to 444.4 ¢ |
Major 10-mosstep | M10ms | 6L + 4s | 444.4 ¢ to 514.3 ¢ | |
11-mosstep | Minor 11-mosstep | m11ms | 5L + 6s | 428.6 ¢ to 488.9 ¢ |
Major 11-mosstep | M11ms | 6L + 5s | 488.9 ¢ to 514.3 ¢ | |
12-mosstep | Minor 12-mosstep | m12ms | 6L + 6s | 514.3 ¢ to 533.3 ¢ |
Major 12-mosstep | M12ms | 7L + 5s | 533.3 ¢ to 600.0 ¢ | |
13-mosstep | Minor 13-mosstep | m13ms | 6L + 7s | 514.3 ¢ to 577.8 ¢ |
Major 13-mosstep | M13ms | 7L + 6s | 577.8 ¢ to 600.0 ¢ | |
14-mosstep | Minor 14-mosstep | m14ms | 7L + 7s | 600.0 ¢ to 622.2 ¢ |
Major 14-mosstep | M14ms | 8L + 6s | 622.2 ¢ to 685.7 ¢ | |
15-mosstep | Minor 15-mosstep | m15ms | 7L + 8s | 600.0 ¢ to 666.7 ¢ |
Major 15-mosstep | M15ms | 8L + 7s | 666.7 ¢ to 685.7 ¢ | |
16-mosstep | Minor 16-mosstep | m16ms | 8L + 8s | 685.7 ¢ to 711.1 ¢ |
Major 16-mosstep | M16ms | 9L + 7s | 711.1 ¢ to 771.4 ¢ | |
17-mosstep | Minor 17-mosstep | m17ms | 8L + 9s | 685.7 ¢ to 755.6 ¢ |
Major 17-mosstep | M17ms | 9L + 8s | 755.6 ¢ to 771.4 ¢ | |
18-mosstep | Minor 18-mosstep | m18ms | 9L + 9s | 771.4 ¢ to 800.0 ¢ |
Major 18-mosstep | M18ms | 10L + 8s | 800.0 ¢ to 857.1 ¢ | |
19-mosstep | Minor 19-mosstep | m19ms | 9L + 10s | 771.4 ¢ to 844.4 ¢ |
Major 19-mosstep | M19ms | 10L + 9s | 844.4 ¢ to 857.1 ¢ | |
20-mosstep | Minor 20-mosstep | m20ms | 10L + 10s | 857.1 ¢ to 888.9 ¢ |
Major 20-mosstep | M20ms | 11L + 9s | 888.9 ¢ to 942.9 ¢ | |
21-mosstep | Minor 21-mosstep | m21ms | 10L + 11s | 857.1 ¢ to 933.3 ¢ |
Major 21-mosstep | M21ms | 11L + 10s | 933.3 ¢ to 942.9 ¢ | |
22-mosstep | Minor 22-mosstep | m22ms | 11L + 11s | 942.9 ¢ to 977.8 ¢ |
Major 22-mosstep | M22ms | 12L + 10s | 977.8 ¢ to 1028.6 ¢ | |
23-mosstep | Minor 23-mosstep | m23ms | 11L + 12s | 942.9 ¢ to 1022.2 ¢ |
Major 23-mosstep | M23ms | 12L + 11s | 1022.2 ¢ to 1028.6 ¢ | |
24-mosstep | Minor 24-mosstep | m24ms | 12L + 12s | 1028.6 ¢ to 1066.7 ¢ |
Major 24-mosstep | M24ms | 13L + 11s | 1066.7 ¢ to 1114.3 ¢ | |
25-mosstep | Diminished 25-mosstep | d25ms | 12L + 13s | 1028.6 ¢ to 1111.1 ¢ |
Perfect 25-mosstep | P25ms | 13L + 12s | 1111.1 ¢ to 1114.3 ¢ | |
26-mosstep | Minor 26-mosstep | m26ms | 13L + 13s | 1114.3 ¢ to 1155.6 ¢ |
Major 26-mosstep | M26ms | 14L + 12s | 1155.6 ¢ to 1200.0 ¢ | |
27-mosstep | Perfect 27-mosstep | P27ms | 14L + 13s | 1200.0 ¢ |
Generator chain
A chain of bright generators, each a perfect 25-mosstep, produces the following scale degrees. A chain of 27 bright generators contains the scale degrees of one of the modes of 14L 13s. Expanding the chain to 41 scale degrees produces the modes of either 27L 14s (for soft-of-basic tunings) or 14L 27s (for hard-of-basic tunings).
Bright gens | Scale degree | Abbrev. |
---|---|---|
40 | Augmented 1-mosdegree | A1md |
39 | Augmented 3-mosdegree | A3md |
38 | Augmented 5-mosdegree | A5md |
37 | Augmented 7-mosdegree | A7md |
36 | Augmented 9-mosdegree | A9md |
35 | Augmented 11-mosdegree | A11md |
34 | Augmented 13-mosdegree | A13md |
33 | Augmented 15-mosdegree | A15md |
32 | Augmented 17-mosdegree | A17md |
31 | Augmented 19-mosdegree | A19md |
30 | Augmented 21-mosdegree | A21md |
29 | Augmented 23-mosdegree | A23md |
28 | Augmented 25-mosdegree | A25md |
27 | Augmented 0-mosdegree | A0md |
26 | Augmented 2-mosdegree | A2md |
25 | Major 4-mosdegree | M4md |
24 | Major 6-mosdegree | M6md |
23 | Major 8-mosdegree | M8md |
22 | Major 10-mosdegree | M10md |
21 | Major 12-mosdegree | M12md |
20 | Major 14-mosdegree | M14md |
19 | Major 16-mosdegree | M16md |
18 | Major 18-mosdegree | M18md |
17 | Major 20-mosdegree | M20md |
16 | Major 22-mosdegree | M22md |
15 | Major 24-mosdegree | M24md |
14 | Major 26-mosdegree | M26md |
13 | Major 1-mosdegree | M1md |
12 | Major 3-mosdegree | M3md |
11 | Major 5-mosdegree | M5md |
10 | Major 7-mosdegree | M7md |
9 | Major 9-mosdegree | M9md |
8 | Major 11-mosdegree | M11md |
7 | Major 13-mosdegree | M13md |
6 | Major 15-mosdegree | M15md |
5 | Major 17-mosdegree | M17md |
4 | Major 19-mosdegree | M19md |
3 | Major 21-mosdegree | M21md |
2 | Major 23-mosdegree | M23md |
1 | Perfect 25-mosdegree | P25md |
0 | Perfect 0-mosdegree Perfect 27-mosdegree |
P0md P27md |
−1 | Perfect 2-mosdegree | P2md |
−2 | Minor 4-mosdegree | m4md |
−3 | Minor 6-mosdegree | m6md |
−4 | Minor 8-mosdegree | m8md |
−5 | Minor 10-mosdegree | m10md |
−6 | Minor 12-mosdegree | m12md |
−7 | Minor 14-mosdegree | m14md |
−8 | Minor 16-mosdegree | m16md |
−9 | Minor 18-mosdegree | m18md |
−10 | Minor 20-mosdegree | m20md |
−11 | Minor 22-mosdegree | m22md |
−12 | Minor 24-mosdegree | m24md |
−13 | Minor 26-mosdegree | m26md |
−14 | Minor 1-mosdegree | m1md |
−15 | Minor 3-mosdegree | m3md |
−16 | Minor 5-mosdegree | m5md |
−17 | Minor 7-mosdegree | m7md |
−18 | Minor 9-mosdegree | m9md |
−19 | Minor 11-mosdegree | m11md |
−20 | Minor 13-mosdegree | m13md |
−21 | Minor 15-mosdegree | m15md |
−22 | Minor 17-mosdegree | m17md |
−23 | Minor 19-mosdegree | m19md |
−24 | Minor 21-mosdegree | m21md |
−25 | Minor 23-mosdegree | m23md |
−26 | Diminished 25-mosdegree | d25md |
−27 | Diminished 27-mosdegree | d27md |
−28 | Diminished 2-mosdegree | d2md |
−29 | Diminished 4-mosdegree | d4md |
−30 | Diminished 6-mosdegree | d6md |
−31 | Diminished 8-mosdegree | d8md |
−32 | Diminished 10-mosdegree | d10md |
−33 | Diminished 12-mosdegree | d12md |
−34 | Diminished 14-mosdegree | d14md |
−35 | Diminished 16-mosdegree | d16md |
−36 | Diminished 18-mosdegree | d18md |
−37 | Diminished 20-mosdegree | d20md |
−38 | Diminished 22-mosdegree | d22md |
−39 | Diminished 24-mosdegree | d24md |
−40 | Diminished 26-mosdegree | d26md |
Modes
UDP | Cyclic order |
Step pattern |
Scale degree (mosdegree) | |||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | |||
26|0 | 1 | LLsLsLsLsLsLsLsLsLsLsLsLsLs | Perf. | Maj. | Aug. | Maj. | Maj. | Maj. | Maj. | Maj. | Maj. | Maj. | Maj. | Maj. | Maj. | Maj. | Maj. | Maj. | Maj. | Maj. | Maj. | Maj. | Maj. | Maj. | Maj. | Maj. | Maj. | Perf. | Maj. | Perf. |
25|1 | 26 | LsLLsLsLsLsLsLsLsLsLsLsLsLs | Perf. | Maj. | Perf. | Maj. | Maj. | Maj. | Maj. | Maj. | Maj. | Maj. | Maj. | Maj. | Maj. | Maj. | Maj. | Maj. | Maj. | Maj. | Maj. | Maj. | Maj. | Maj. | Maj. | Maj. | Maj. | Perf. | Maj. | Perf. |
24|2 | 24 | LsLsLLsLsLsLsLsLsLsLsLsLsLs | Perf. | Maj. | Perf. | Maj. | Min. | Maj. | Maj. | Maj. | Maj. | Maj. | Maj. | Maj. | Maj. | Maj. | Maj. | Maj. | Maj. | Maj. | Maj. | Maj. | Maj. | Maj. | Maj. | Maj. | Maj. | Perf. | Maj. | Perf. |
23|3 | 22 | LsLsLsLLsLsLsLsLsLsLsLsLsLs | Perf. | Maj. | Perf. | Maj. | Min. | Maj. | Min. | Maj. | Maj. | Maj. | Maj. | Maj. | Maj. | Maj. | Maj. | Maj. | Maj. | Maj. | Maj. | Maj. | Maj. | Maj. | Maj. | Maj. | Maj. | Perf. | Maj. | Perf. |
22|4 | 20 | LsLsLsLsLLsLsLsLsLsLsLsLsLs | Perf. | Maj. | Perf. | Maj. | Min. | Maj. | Min. | Maj. | Min. | Maj. | Maj. | Maj. | Maj. | Maj. | Maj. | Maj. | Maj. | Maj. | Maj. | Maj. | Maj. | Maj. | Maj. | Maj. | Maj. | Perf. | Maj. | Perf. |
21|5 | 18 | LsLsLsLsLsLLsLsLsLsLsLsLsLs | Perf. | Maj. | Perf. | Maj. | Min. | Maj. | Min. | Maj. | Min. | Maj. | Min. | Maj. | Maj. | Maj. | Maj. | Maj. | Maj. | Maj. | Maj. | Maj. | Maj. | Maj. | Maj. | Maj. | Maj. | Perf. | Maj. | Perf. |
20|6 | 16 | LsLsLsLsLsLsLLsLsLsLsLsLsLs | Perf. | Maj. | Perf. | Maj. | Min. | Maj. | Min. | Maj. | Min. | Maj. | Min. | Maj. | Min. | Maj. | Maj. | Maj. | Maj. | Maj. | Maj. | Maj. | Maj. | Maj. | Maj. | Maj. | Maj. | Perf. | Maj. | Perf. |
19|7 | 14 | LsLsLsLsLsLsLsLLsLsLsLsLsLs | Perf. | Maj. | Perf. | Maj. | Min. | Maj. | Min. | Maj. | Min. | Maj. | Min. | Maj. | Min. | Maj. | Min. | Maj. | Maj. | Maj. | Maj. | Maj. | Maj. | Maj. | Maj. | Maj. | Maj. | Perf. | Maj. | Perf. |
18|8 | 12 | LsLsLsLsLsLsLsLsLLsLsLsLsLs | Perf. | Maj. | Perf. | Maj. | Min. | Maj. | Min. | Maj. | Min. | Maj. | Min. | Maj. | Min. | Maj. | Min. | Maj. | Min. | Maj. | Maj. | Maj. | Maj. | Maj. | Maj. | Maj. | Maj. | Perf. | Maj. | Perf. |
17|9 | 10 | LsLsLsLsLsLsLsLsLsLLsLsLsLs | Perf. | Maj. | Perf. | Maj. | Min. | Maj. | Min. | Maj. | Min. | Maj. | Min. | Maj. | Min. | Maj. | Min. | Maj. | Min. | Maj. | Min. | Maj. | Maj. | Maj. | Maj. | Maj. | Maj. | Perf. | Maj. | Perf. |
16|10 | 8 | LsLsLsLsLsLsLsLsLsLsLLsLsLs | Perf. | Maj. | Perf. | Maj. | Min. | Maj. | Min. | Maj. | Min. | Maj. | Min. | Maj. | Min. | Maj. | Min. | Maj. | Min. | Maj. | Min. | Maj. | Min. | Maj. | Maj. | Maj. | Maj. | Perf. | Maj. | Perf. |
15|11 | 6 | LsLsLsLsLsLsLsLsLsLsLsLLsLs | Perf. | Maj. | Perf. | Maj. | Min. | Maj. | Min. | Maj. | Min. | Maj. | Min. | Maj. | Min. | Maj. | Min. | Maj. | Min. | Maj. | Min. | Maj. | Min. | Maj. | Min. | Maj. | Maj. | Perf. | Maj. | Perf. |
14|12 | 4 | LsLsLsLsLsLsLsLsLsLsLsLsLLs | Perf. | Maj. | Perf. | Maj. | Min. | Maj. | Min. | Maj. | Min. | Maj. | Min. | Maj. | Min. | Maj. | Min. | Maj. | Min. | Maj. | Min. | Maj. | Min. | Maj. | Min. | Maj. | Min. | Perf. | Maj. | Perf. |
13|13 | 2 | LsLsLsLsLsLsLsLsLsLsLsLsLsL | Perf. | Maj. | Perf. | Maj. | Min. | Maj. | Min. | Maj. | Min. | Maj. | Min. | Maj. | Min. | Maj. | Min. | Maj. | Min. | Maj. | Min. | Maj. | Min. | Maj. | Min. | Maj. | Min. | Perf. | Min. | Perf. |
12|14 | 27 | sLLsLsLsLsLsLsLsLsLsLsLsLsL | Perf. | Min. | Perf. | Maj. | Min. | Maj. | Min. | Maj. | Min. | Maj. | Min. | Maj. | Min. | Maj. | Min. | Maj. | Min. | Maj. | Min. | Maj. | Min. | Maj. | Min. | Maj. | Min. | Perf. | Min. | Perf. |
11|15 | 25 | sLsLLsLsLsLsLsLsLsLsLsLsLsL | Perf. | Min. | Perf. | Min. | Min. | Maj. | Min. | Maj. | Min. | Maj. | Min. | Maj. | Min. | Maj. | Min. | Maj. | Min. | Maj. | Min. | Maj. | Min. | Maj. | Min. | Maj. | Min. | Perf. | Min. | Perf. |
10|16 | 23 | sLsLsLLsLsLsLsLsLsLsLsLsLsL | Perf. | Min. | Perf. | Min. | Min. | Min. | Min. | Maj. | Min. | Maj. | Min. | Maj. | Min. | Maj. | Min. | Maj. | Min. | Maj. | Min. | Maj. | Min. | Maj. | Min. | Maj. | Min. | Perf. | Min. | Perf. |
9|17 | 21 | sLsLsLsLLsLsLsLsLsLsLsLsLsL | Perf. | Min. | Perf. | Min. | Min. | Min. | Min. | Min. | Min. | Maj. | Min. | Maj. | Min. | Maj. | Min. | Maj. | Min. | Maj. | Min. | Maj. | Min. | Maj. | Min. | Maj. | Min. | Perf. | Min. | Perf. |
8|18 | 19 | sLsLsLsLsLLsLsLsLsLsLsLsLsL | Perf. | Min. | Perf. | Min. | Min. | Min. | Min. | Min. | Min. | Min. | Min. | Maj. | Min. | Maj. | Min. | Maj. | Min. | Maj. | Min. | Maj. | Min. | Maj. | Min. | Maj. | Min. | Perf. | Min. | Perf. |
7|19 | 17 | sLsLsLsLsLsLLsLsLsLsLsLsLsL | Perf. | Min. | Perf. | Min. | Min. | Min. | Min. | Min. | Min. | Min. | Min. | Min. | Min. | Maj. | Min. | Maj. | Min. | Maj. | Min. | Maj. | Min. | Maj. | Min. | Maj. | Min. | Perf. | Min. | Perf. |
6|20 | 15 | sLsLsLsLsLsLsLLsLsLsLsLsLsL | Perf. | Min. | Perf. | Min. | Min. | Min. | Min. | Min. | Min. | Min. | Min. | Min. | Min. | Min. | Min. | Maj. | Min. | Maj. | Min. | Maj. | Min. | Maj. | Min. | Maj. | Min. | Perf. | Min. | Perf. |
5|21 | 13 | sLsLsLsLsLsLsLsLLsLsLsLsLsL | Perf. | Min. | Perf. | Min. | Min. | Min. | Min. | Min. | Min. | Min. | Min. | Min. | Min. | Min. | Min. | Min. | Min. | Maj. | Min. | Maj. | Min. | Maj. | Min. | Maj. | Min. | Perf. | Min. | Perf. |
4|22 | 11 | sLsLsLsLsLsLsLsLsLLsLsLsLsL | Perf. | Min. | Perf. | Min. | Min. | Min. | Min. | Min. | Min. | Min. | Min. | Min. | Min. | Min. | Min. | Min. | Min. | Min. | Min. | Maj. | Min. | Maj. | Min. | Maj. | Min. | Perf. | Min. | Perf. |
3|23 | 9 | sLsLsLsLsLsLsLsLsLsLLsLsLsL | Perf. | Min. | Perf. | Min. | Min. | Min. | Min. | Min. | Min. | Min. | Min. | Min. | Min. | Min. | Min. | Min. | Min. | Min. | Min. | Min. | Min. | Maj. | Min. | Maj. | Min. | Perf. | Min. | Perf. |
2|24 | 7 | sLsLsLsLsLsLsLsLsLsLsLLsLsL | Perf. | Min. | Perf. | Min. | Min. | Min. | Min. | Min. | Min. | Min. | Min. | Min. | Min. | Min. | Min. | Min. | Min. | Min. | Min. | Min. | Min. | Min. | Min. | Maj. | Min. | Perf. | Min. | Perf. |
1|25 | 5 | sLsLsLsLsLsLsLsLsLsLsLsLLsL | Perf. | Min. | Perf. | Min. | Min. | Min. | Min. | Min. | Min. | Min. | Min. | Min. | Min. | Min. | Min. | Min. | Min. | Min. | Min. | Min. | Min. | Min. | Min. | Min. | Min. | Perf. | Min. | Perf. |
0|26 | 3 | sLsLsLsLsLsLsLsLsLsLsLsLsLL | Perf. | Min. | Perf. | Min. | Min. | Min. | Min. | Min. | Min. | Min. | Min. | Min. | Min. | Min. | Min. | Min. | Min. | Min. | Min. | Min. | Min. | Min. | Min. | Min. | Min. | Dim. | Min. | Perf. |
Scale tree
Generator(edo) | Cents | Step ratio | Comments | |||||||
---|---|---|---|---|---|---|---|---|---|---|
Bright | Dark | L:s | Hardness | |||||||
25\27 | 1111.111 | 88.889 | 1:1 | 1.000 | Equalized 14L 13s | |||||
138\149 | 1111.409 | 88.591 | 6:5 | 1.200 | ||||||
113\122 | 1111.475 | 88.525 | 5:4 | 1.250 | ||||||
201\217 | 1111.521 | 88.479 | 9:7 | 1.286 | ||||||
88\95 | 1111.579 | 88.421 | 4:3 | 1.333 | Supersoft 14L 13s | |||||
239\258 | 1111.628 | 88.372 | 11:8 | 1.375 | ||||||
151\163 | 1111.656 | 88.344 | 7:5 | 1.400 | ||||||
214\231 | 1111.688 | 88.312 | 10:7 | 1.429 | ||||||
63\68 | 1111.765 | 88.235 | 3:2 | 1.500 | Soft 14L 13s | |||||
227\245 | 1111.837 | 88.163 | 11:7 | 1.571 | ||||||
164\177 | 1111.864 | 88.136 | 8:5 | 1.600 | ||||||
265\286 | 1111.888 | 88.112 | 13:8 | 1.625 | ||||||
101\109 | 1111.927 | 88.073 | 5:3 | 1.667 | Semisoft 14L 13s | |||||
240\259 | 1111.969 | 88.031 | 12:7 | 1.714 | ||||||
139\150 | 1112.000 | 88.000 | 7:4 | 1.750 | ||||||
177\191 | 1112.042 | 87.958 | 9:5 | 1.800 | ||||||
38\41 | 1112.195 | 87.805 | 2:1 | 2.000 | Basic 14L 13s Scales with tunings softer than this are proper | |||||
165\178 | 1112.360 | 87.640 | 9:4 | 2.250 | ||||||
127\137 | 1112.409 | 87.591 | 7:3 | 2.333 | ||||||
216\233 | 1112.446 | 87.554 | 12:5 | 2.400 | ||||||
89\96 | 1112.500 | 87.500 | 5:2 | 2.500 | Semihard 14L 13s | |||||
229\247 | 1112.551 | 87.449 | 13:5 | 2.600 | ||||||
140\151 | 1112.583 | 87.417 | 8:3 | 2.667 | ||||||
191\206 | 1112.621 | 87.379 | 11:4 | 2.750 | ||||||
51\55 | 1112.727 | 87.273 | 3:1 | 3.000 | Hard 14L 13s | |||||
166\179 | 1112.849 | 87.151 | 10:3 | 3.333 | ||||||
115\124 | 1112.903 | 87.097 | 7:2 | 3.500 | ||||||
179\193 | 1112.953 | 87.047 | 11:3 | 3.667 | ||||||
64\69 | 1113.043 | 86.957 | 4:1 | 4.000 | Superhard 14L 13s | |||||
141\152 | 1113.158 | 86.842 | 9:2 | 4.500 | ||||||
77\83 | 1113.253 | 86.747 | 5:1 | 5.000 | ||||||
90\97 | 1113.402 | 86.598 | 6:1 | 6.000 | ||||||
13\14 | 1114.286 | 85.714 | 1:0 | → ∞ | Collapsed 14L 13s |