2L 14s
Jump to navigation
Jump to search
Scale structure
Step pattern
LsssssssLsssssss
sssssssLsssssssL
Equave
2/1 (1200.0¢)
Period
1\2 (600.0¢)
Generator size
Bright
7\16 to 1\2 (525.0¢ to 600.0¢)
Dark
0\2 to 1\16 (0.0¢ to 75.0¢)
TAMNAMS information
Descends from
2L 8s (jaric)
Ancestor's step ratio range
4:1 to 1:0 (ultrahard)
Related MOS scales
Parent
2L 12s
Sister
14L 2s
Daughters
16L 2s, 2L 16s
Neutralized
4L 12s
2-Flought
18L 14s, 2L 30s
Equal tunings
Equalized (L:s = 1:1)
7\16 (525.0¢)
Supersoft (L:s = 4:3)
22\50 (528.0¢)
Soft (L:s = 3:2)
15\34 (529.4¢)
Semisoft (L:s = 5:3)
23\52 (530.8¢)
Basic (L:s = 2:1)
8\18 (533.3¢)
Semihard (L:s = 5:2)
17\38 (536.8¢)
Hard (L:s = 3:1)
9\20 (540.0¢)
Superhard (L:s = 4:1)
10\22 (545.5¢)
Collapsed (L:s = 1:0)
1\2 (600.0¢)
↖ 1L 13s | ↑ 2L 13s | 3L 13s ↗ |
← 1L 14s | 2L 14s | 3L 14s → |
↙ 1L 15s | ↓ 2L 15s | 3L 15s ↘ |
┌╥┬┬┬┬┬┬┬╥┬┬┬┬┬┬┬┐ │║│││││││║││││││││ ││││││││││││││││││ └┴┴┴┴┴┴┴┴┴┴┴┴┴┴┴┴┘
sssssssLsssssssL
2L 14s is a 2/1-equivalent (octave-equivalent) moment of symmetry scale containing 2 large steps and 14 small steps, with a period of 1 large step and 7 small steps that repeats every 600.0¢, or twice every octave. 2L 14s is a great-grandchild scale of 2L 8s, expanding it by 6 tones. Generators that produce this scale range from 525¢ to 600¢, or from 0¢ to 75¢.
Modes
UDP | Cyclic order |
Step pattern |
---|---|---|
14|0(2) | 1 | LsssssssLsssssss |
12|2(2) | 8 | sLsssssssLssssss |
10|4(2) | 7 | ssLsssssssLsssss |
8|6(2) | 6 | sssLsssssssLssss |
6|8(2) | 5 | ssssLsssssssLsss |
4|10(2) | 4 | sssssLsssssssLss |
2|12(2) | 3 | ssssssLsssssssLs |
0|14(2) | 2 | sssssssLsssssssL |
Intervals
Intervals | Steps subtended |
Range in cents | ||
---|---|---|---|---|
Generic | Specific | Abbrev. | ||
0-mosstep | Perfect 0-mosstep | P0ms | 0 | 0.0¢ |
1-mosstep | Perfect 1-mosstep | P1ms | s | 0.0¢ to 75.0¢ |
Augmented 1-mosstep | A1ms | L | 75.0¢ to 600.0¢ | |
2-mosstep | Minor 2-mosstep | m2ms | 2s | 0.0¢ to 150.0¢ |
Major 2-mosstep | M2ms | L + s | 150.0¢ to 600.0¢ | |
3-mosstep | Minor 3-mosstep | m3ms | 3s | 0.0¢ to 225.0¢ |
Major 3-mosstep | M3ms | L + 2s | 225.0¢ to 600.0¢ | |
4-mosstep | Minor 4-mosstep | m4ms | 4s | 0.0¢ to 300.0¢ |
Major 4-mosstep | M4ms | L + 3s | 300.0¢ to 600.0¢ | |
5-mosstep | Minor 5-mosstep | m5ms | 5s | 0.0¢ to 375.0¢ |
Major 5-mosstep | M5ms | L + 4s | 375.0¢ to 600.0¢ | |
6-mosstep | Minor 6-mosstep | m6ms | 6s | 0.0¢ to 450.0¢ |
Major 6-mosstep | M6ms | L + 5s | 450.0¢ to 600.0¢ | |
7-mosstep | Diminished 7-mosstep | d7ms | 7s | 0.0¢ to 525.0¢ |
Perfect 7-mosstep | P7ms | L + 6s | 525.0¢ to 600.0¢ | |
8-mosstep | Perfect 8-mosstep | P8ms | L + 7s | 600.0¢ |
9-mosstep | Perfect 9-mosstep | P9ms | L + 8s | 600.0¢ to 675.0¢ |
Augmented 9-mosstep | A9ms | 2L + 7s | 675.0¢ to 1200.0¢ | |
10-mosstep | Minor 10-mosstep | m10ms | L + 9s | 600.0¢ to 750.0¢ |
Major 10-mosstep | M10ms | 2L + 8s | 750.0¢ to 1200.0¢ | |
11-mosstep | Minor 11-mosstep | m11ms | L + 10s | 600.0¢ to 825.0¢ |
Major 11-mosstep | M11ms | 2L + 9s | 825.0¢ to 1200.0¢ | |
12-mosstep | Minor 12-mosstep | m12ms | L + 11s | 600.0¢ to 900.0¢ |
Major 12-mosstep | M12ms | 2L + 10s | 900.0¢ to 1200.0¢ | |
13-mosstep | Minor 13-mosstep | m13ms | L + 12s | 600.0¢ to 975.0¢ |
Major 13-mosstep | M13ms | 2L + 11s | 975.0¢ to 1200.0¢ | |
14-mosstep | Minor 14-mosstep | m14ms | L + 13s | 600.0¢ to 1050.0¢ |
Major 14-mosstep | M14ms | 2L + 12s | 1050.0¢ to 1200.0¢ | |
15-mosstep | Diminished 15-mosstep | d15ms | L + 14s | 600.0¢ to 1125.0¢ |
Perfect 15-mosstep | P15ms | 2L + 13s | 1125.0¢ to 1200.0¢ | |
16-mosstep | Perfect 16-mosstep | P16ms | 2L + 14s | 1200.0¢ |
Scale tree
Generator(edo) | Cents | Step ratio | Comments | |||||||
---|---|---|---|---|---|---|---|---|---|---|
Bright | Dark | L:s | Hardness | |||||||
7\16 | 525.000 | 75.000 | 1:1 | 1.000 | Equalized 2L 14s | |||||
36\82 | 526.829 | 73.171 | 6:5 | 1.200 | ||||||
29\66 | 527.273 | 72.727 | 5:4 | 1.250 | ||||||
51\116 | 527.586 | 72.414 | 9:7 | 1.286 | ||||||
22\50 | 528.000 | 72.000 | 4:3 | 1.333 | Supersoft 2L 14s | |||||
59\134 | 528.358 | 71.642 | 11:8 | 1.375 | ||||||
37\84 | 528.571 | 71.429 | 7:5 | 1.400 | ||||||
52\118 | 528.814 | 71.186 | 10:7 | 1.429 | ||||||
15\34 | 529.412 | 70.588 | 3:2 | 1.500 | Soft 2L 14s | |||||
53\120 | 530.000 | 70.000 | 11:7 | 1.571 | ||||||
38\86 | 530.233 | 69.767 | 8:5 | 1.600 | ||||||
61\138 | 530.435 | 69.565 | 13:8 | 1.625 | ||||||
23\52 | 530.769 | 69.231 | 5:3 | 1.667 | Semisoft 2L 14s | |||||
54\122 | 531.148 | 68.852 | 12:7 | 1.714 | ||||||
31\70 | 531.429 | 68.571 | 7:4 | 1.750 | ||||||
39\88 | 531.818 | 68.182 | 9:5 | 1.800 | ||||||
8\18 | 533.333 | 66.667 | 2:1 | 2.000 | Basic 2L 14s Scales with tunings softer than this are proper | |||||
33\74 | 535.135 | 64.865 | 9:4 | 2.250 | ||||||
25\56 | 535.714 | 64.286 | 7:3 | 2.333 | ||||||
42\94 | 536.170 | 63.830 | 12:5 | 2.400 | ||||||
17\38 | 536.842 | 63.158 | 5:2 | 2.500 | Semihard 2L 14s | |||||
43\96 | 537.500 | 62.500 | 13:5 | 2.600 | ||||||
26\58 | 537.931 | 62.069 | 8:3 | 2.667 | ||||||
35\78 | 538.462 | 61.538 | 11:4 | 2.750 | ||||||
9\20 | 540.000 | 60.000 | 3:1 | 3.000 | Hard 2L 14s | |||||
28\62 | 541.935 | 58.065 | 10:3 | 3.333 | ||||||
19\42 | 542.857 | 57.143 | 7:2 | 3.500 | ||||||
29\64 | 543.750 | 56.250 | 11:3 | 3.667 | ||||||
10\22 | 545.455 | 54.545 | 4:1 | 4.000 | Superhard 2L 14s | |||||
21\46 | 547.826 | 52.174 | 9:2 | 4.500 | ||||||
11\24 | 550.000 | 50.000 | 5:1 | 5.000 | ||||||
12\26 | 553.846 | 46.154 | 6:1 | 6.000 | ||||||
1\2 | 600.000 | 0.000 | 1:0 | → ∞ | Collapsed 2L 14s |
This page is a stub. You can help the Xenharmonic Wiki by expanding it. |