329edo
Jump to navigation
Jump to search
Prime factorization
7 × 47
Step size
3.64742¢
Fifth
192\329 (700.304¢)
Semitones (A1:m2)
28:27 (102.1¢ : 98.48¢)
Dual sharp fifth
193\329 (703.951¢)
Dual flat fifth
192\329 (700.304¢)
Dual major 2nd
56\329 (204.255¢) (→8\47)
Consistency limit
3
Distinct consistency limit
3
← 328edo | 329edo | 330edo → |
329 equal divisions of the octave (329edo), or 329-tone equal temperament (329tet), 329 equal temperament (329et) when viewed from a regular temperament perspective, is the tuning system that divides the octave into 329 equal parts of about 3.65 ¢ each.
Theory
Harmonic | 3 | 5 | 7 | 9 | 11 | 13 | 15 | 17 | 19 | 21 | 23 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | absolute (¢) | -1.65 | +0.31 | +1.39 | +0.35 | -0.56 | -1.62 | -1.34 | +0.82 | +1.58 | -0.26 | -0.92 |
relative (%) | -45 | +9 | +38 | +9 | -15 | -44 | -37 | +22 | +43 | -7 | -25 | |
Steps (reduced) |
521 (192) |
764 (106) |
924 (266) |
1043 (56) |
1138 (151) |
1217 (230) |
1285 (298) |
1345 (29) |
1398 (82) |
1445 (129) |
1488 (172) |
329edo provides excellent tuning for the secor / miracle temperament, containing a continued fraction convergent to the definition of secor - 32 steps out of 329.