87edt
Jump to navigation
Jump to search
Prime factorization
3 × 29
Step size
21.8616¢
Octave
55\87edt (1202.39¢)
Consistency limit
4
Distinct consistency limit
4
← 86edt | 87edt | 88edt → |
Division of the third harmonic into 87 equal parts (87EDT) is related to 55 edo, but with the 3/1 rather than the 2/1 being just. The octave is about 2.3853 cents stretched and the step size is about 21.8616 cents. Unlike 55edo, it is only consistent up to the 4-integer-limit, with discrepancy for the 5th harmonic.
Lookalikes: 55edo, 142ed6, 154ed7
Intervals
Steps | Cents | Approximate Ratios |
---|---|---|
0 | 0 | 1/1 |
1 | 21.862 | |
2 | 43.723 | 38/37, 39/38, 40/39, 41/40 |
3 | 65.585 | 27/26, 28/27 |
4 | 87.446 | 20/19, 41/39 |
5 | 109.308 | 33/31 |
6 | 131.169 | 14/13, 41/38 |
7 | 153.031 | 12/11 |
8 | 174.892 | 21/19, 31/28, 41/37 |
9 | 196.754 | 37/33 |
10 | 218.616 | 17/15 |
11 | 240.477 | 23/20, 31/27 |
12 | 262.339 | |
13 | 284.2 | 20/17, 33/28 |
14 | 306.062 | 31/26, 37/31 |
15 | 327.923 | 23/19, 29/24 |
16 | 349.785 | 11/9, 38/31 |
17 | 371.646 | 26/21, 36/29 |
18 | 393.508 | |
19 | 415.369 | 14/11, 33/26 |
20 | 437.231 | 9/7 |
21 | 459.093 | 30/23 |
22 | 480.954 | 29/22, 37/28 |
23 | 502.816 | |
24 | 524.677 | 23/17 |
25 | 546.539 | 37/27 |
26 | 568.4 | |
27 | 590.262 | 38/27 |
28 | 612.123 | 37/26 |
29 | 633.985 | 13/9 |
30 | 655.847 | 19/13 |
31 | 677.708 | 34/23, 40/27 |
32 | 699.57 | 3/2 |
33 | 721.431 | 41/27 |
34 | 743.293 | 20/13 |
35 | 765.154 | 14/9 |
36 | 787.016 | 41/26 |
37 | 808.877 | |
38 | 830.739 | 21/13 |
39 | 852.601 | 18/11 |
40 | 874.462 | |
41 | 896.324 | |
42 | 918.185 | 17/10 |
43 | 940.047 | 31/18 |
44 | 961.908 | |
45 | 983.77 | 30/17 |
46 | 1005.631 | 34/19 |
47 | 1027.493 | 29/16, 38/21 |
48 | 1049.354 | 11/6 |
49 | 1071.216 | 13/7 |
50 | 1093.078 | |
51 | 1114.939 | 40/21 |
52 | 1136.801 | 27/14 |
53 | 1158.662 | 39/20, 41/21 |
54 | 1180.524 | |
55 | 1202.385 | 2/1 |
56 | 1224.247 | |
57 | 1246.108 | 37/18, 39/19 |
58 | 1267.97 | 27/13 |
59 | 1289.832 | 40/19 |
60 | 1311.693 | |
61 | 1333.555 | 41/19 |
62 | 1355.416 | |
63 | 1377.278 | 31/14 |
64 | 1399.139 | |
65 | 1421.001 | |
66 | 1442.862 | 23/10 |
67 | 1464.724 | 7/3 |
68 | 1486.586 | 26/11, 33/14 |
69 | 1508.447 | |
70 | 1530.309 | 29/12 |
71 | 1552.17 | 27/11 |
72 | 1574.032 | |
73 | 1595.893 | |
74 | 1617.755 | 28/11 |
75 | 1639.616 | |
76 | 1661.478 | |
77 | 1683.339 | 37/14 |
78 | 1705.201 | |
79 | 1727.063 | 19/7 |
80 | 1748.924 | 11/4 |
81 | 1770.786 | 39/14 |
82 | 1792.647 | 31/11 |
83 | 1814.509 | |
84 | 1836.37 | 26/9 |
85 | 1858.232 | 38/13, 41/14 |
86 | 1880.093 | |
87 | 1901.955 | 3/1 |
Harmonics
Harmonic | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | +2.39 | +0.00 | +4.77 | -9.90 | +2.39 | -2.15 | +7.16 | +0.00 | -7.51 | +2.38 | +4.77 |
Relative (%) | +10.9 | +0.0 | +21.8 | -45.3 | +10.9 | -9.8 | +32.7 | +0.0 | -34.4 | +10.9 | +21.8 | |
Steps (reduced) |
55 (55) |
87 (0) |
110 (23) |
127 (40) |
142 (55) |
154 (67) |
165 (78) |
174 (0) |
182 (8) |
190 (16) |
197 (23) |
Harmonic | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | -2.63 | +0.24 | -9.90 | +9.54 | -7.97 | +2.39 | -3.77 | -5.13 | -2.15 | +4.76 | -6.61 |
Relative (%) | -12.0 | +1.1 | -45.3 | +43.6 | -36.4 | +10.9 | -17.3 | -23.4 | -9.8 | +21.8 | -30.2 | |
Steps (reduced) |
203 (29) |
209 (35) |
214 (40) |
220 (46) |
224 (50) |
229 (55) |
233 (59) |
237 (63) |
241 (67) |
245 (71) |
248 (74) |