86edt
Jump to navigation
Jump to search
Prime factorization
2 × 43
Step size
22.1158¢
Octave
54\86edt (1194.25¢) (→27\43edt)
Consistency limit
2
Distinct consistency limit
2
This page is a stub. You can help the Xenharmonic Wiki by expanding it. |
← 85edt | 86edt | 87edt → |
86 equal divisions of the tritave, perfect twelfth, or 3rd harmonic (abbreviated 86edt or 86ed3), is a nonoctave tuning system that divides the interval of 3/1 into 86 equal parts of about 22.1 ¢ each. Each step represents a frequency ratio of 31/86, or the 86th root of 3.
Intervals
Steps | Cents | Approximate ratios |
---|---|---|
0 | 0 | 1/1 |
1 | 22.1 | |
2 | 44.2 | |
3 | 66.3 | 26/25, 27/26 |
4 | 88.5 | 20/19, 39/37, 41/39 |
5 | 110.6 | 33/31 |
6 | 132.7 | 27/25 |
7 | 154.8 | 23/21 |
8 | 176.9 | 41/37 |
9 | 199 | 37/33 |
10 | 221.2 | 25/22, 33/29 |
11 | 243.3 | 23/20 |
12 | 265.4 | 7/6 |
13 | 287.5 | 13/11 |
14 | 309.6 | |
15 | 331.7 | 23/19 |
16 | 353.9 | 27/22 |
17 | 376 | 41/33 |
18 | 398.1 | 34/27, 39/31 |
19 | 420.2 | 37/29 |
20 | 442.3 | |
21 | 464.4 | 17/13 |
22 | 486.5 | 41/31 |
23 | 508.7 | |
24 | 530.8 | 19/14, 34/25 |
25 | 552.9 | |
26 | 575 | |
27 | 597.1 | 41/29 |
28 | 619.2 | 10/7 |
29 | 641.4 | |
30 | 663.5 | 22/15 |
31 | 685.6 | |
32 | 707.7 | |
33 | 729.8 | 35/23 |
34 | 751.9 | 17/11 |
35 | 774.1 | 36/23 |
36 | 796.2 | 19/12 |
37 | 818.3 | |
38 | 840.4 | |
39 | 862.5 | |
40 | 884.6 | 5/3 |
41 | 906.7 | |
42 | 928.9 | |
43 | 951 | 26/15 |
44 | 973.1 | |
45 | 995.2 | |
46 | 1017.3 | 9/5 |
47 | 1039.4 | 31/17 |
48 | 1061.6 | |
49 | 1083.7 | |
50 | 1105.8 | 36/19 |
51 | 1127.9 | 23/12 |
52 | 1150 | 33/17, 35/18 |
53 | 1172.1 | |
54 | 1194.3 | |
55 | 1216.4 | |
56 | 1238.5 | |
57 | 1260.6 | |
58 | 1282.7 | 21/10 |
59 | 1304.8 | |
60 | 1326.9 | |
61 | 1349.1 | 37/17 |
62 | 1371.2 | |
63 | 1393.3 | |
64 | 1415.4 | 34/15 |
65 | 1437.5 | 39/17 |
66 | 1459.6 | |
67 | 1481.8 | |
68 | 1503.9 | 31/13 |
69 | 1526 | 41/17 |
70 | 1548.1 | 22/9 |
71 | 1570.2 | |
72 | 1592.3 | |
73 | 1614.5 | 33/13 |
74 | 1636.6 | 18/7 |
75 | 1658.7 | |
76 | 1680.8 | 29/11 |
77 | 1702.9 | |
78 | 1725 | |
79 | 1747.1 | |
80 | 1769.3 | 25/9 |
81 | 1791.4 | 31/11 |
82 | 1813.5 | 37/13 |
83 | 1835.6 | 26/9 |
84 | 1857.7 | |
85 | 1879.8 | |
86 | 1902 | 3/1 |
Harmonics
Harmonic | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | -5.75 | +0.00 | +10.62 | +0.27 | -5.75 | -7.23 | +4.87 | +0.00 | -5.48 | +6.44 | +10.62 |
Relative (%) | -26.0 | +0.0 | +48.0 | +1.2 | -26.0 | -32.7 | +22.0 | +0.0 | -24.8 | +29.1 | +48.0 | |
Steps (reduced) |
54 (54) |
86 (0) |
109 (23) |
126 (40) |
140 (54) |
152 (66) |
163 (77) |
172 (0) |
180 (8) |
188 (16) |
195 (23) |
Harmonic | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | +4.74 | +9.14 | +0.27 | -0.88 | +4.74 | -5.75 | -10.89 | +10.89 | -7.23 | +0.69 | -9.91 |
Relative (%) | +21.4 | +41.3 | +1.2 | -4.0 | +21.4 | -26.0 | -49.2 | +49.2 | -32.7 | +3.1 | -44.8 | |
Steps (reduced) |
201 (29) |
207 (35) |
212 (40) |
217 (45) |
222 (50) |
226 (54) |
230 (58) |
235 (63) |
238 (66) |
242 (70) |
245 (73) |