86edt

From Xenharmonic Wiki
Jump to navigation Jump to search
Icon-Stub.png This page is a stub. You can help the Xenharmonic Wiki by expanding it.
← 85edt 86edt 87edt →
Prime factorization 2 × 43
Step size 22.1158¢ 
Octave 54\86edt (1194.25¢) (→27\43edt)
Consistency limit 2
Distinct consistency limit 2

86 equal divisions of the tritave, perfect twelfth, or 3rd harmonic (abbreviated 86edt or 86ed3), is a nonoctave tuning system that divides the interval of 3/1 into 86 equal parts of about 22.1⁠ ⁠¢ each. Each step represents a frequency ratio of 31/86, or the 86th root of 3.

Intervals

Steps Cents Hekts Approximate ratios
0 0 0 1/1
1 22.1 15.1
2 44.2 30.2
3 66.3 45.3 26/25, 27/26
4 88.5 60.5 20/19, 39/37, 41/39
5 110.6 75.6 33/31
6 132.7 90.7 27/25
7 154.8 105.8 23/21
8 176.9 120.9 41/37
9 199 136 37/33
10 221.2 151.2 25/22, 33/29
11 243.3 166.3 23/20
12 265.4 181.4 7/6
13 287.5 196.5 13/11
14 309.6 211.6
15 331.7 226.7 23/19
16 353.9 241.9 27/22
17 376 257 41/33
18 398.1 272.1 34/27, 39/31
19 420.2 287.2 37/29
20 442.3 302.3
21 464.4 317.4 17/13
22 486.5 332.6 41/31
23 508.7 347.7
24 530.8 362.8 19/14, 34/25
25 552.9 377.9
26 575 393
27 597.1 408.1 41/29
28 619.2 423.3 10/7
29 641.4 438.4
30 663.5 453.5 22/15
31 685.6 468.6
32 707.7 483.7
33 729.8 498.8 35/23
34 751.9 514 17/11
35 774.1 529.1 36/23
36 796.2 544.2 19/12
37 818.3 559.3
38 840.4 574.4
39 862.5 589.5
40 884.6 604.7 5/3
41 906.7 619.8
42 928.9 634.9
43 951 650 26/15
44 973.1 665.1
45 995.2 680.2
46 1017.3 695.3 9/5
47 1039.4 710.5 31/17
48 1061.6 725.6
49 1083.7 740.7
50 1105.8 755.8 36/19
51 1127.9 770.9 23/12
52 1150 786 33/17, 35/18
53 1172.1 801.2
54 1194.3 816.3
55 1216.4 831.4
56 1238.5 846.5
57 1260.6 861.6
58 1282.7 876.7 21/10
59 1304.8 891.9
60 1326.9 907
61 1349.1 922.1 37/17
62 1371.2 937.2
63 1393.3 952.3
64 1415.4 967.4 34/15
65 1437.5 982.6 39/17
66 1459.6 997.7
67 1481.8 1012.8
68 1503.9 1027.9 31/13
69 1526 1043 41/17
70 1548.1 1058.1 22/9
71 1570.2 1073.3
72 1592.3 1088.4
73 1614.5 1103.5 33/13
74 1636.6 1118.6 18/7
75 1658.7 1133.7
76 1680.8 1148.8 29/11
77 1702.9 1164
78 1725 1179.1
79 1747.1 1194.2
80 1769.3 1209.3 25/9
81 1791.4 1224.4 31/11
82 1813.5 1239.5 37/13
83 1835.6 1254.7 26/9
84 1857.7 1269.8
85 1879.8 1284.9
86 1902 1300 3/1

Harmonics

Approximation of harmonics in 86edt
Harmonic 2 3 4 5 6 7 8 9 10 11 12
Error Absolute (¢) -5.75 +0.00 +10.62 +0.27 -5.75 -7.23 +4.87 +0.00 -5.48 +6.44 +10.62
Relative (%) -26.0 +0.0 +48.0 +1.2 -26.0 -32.7 +22.0 +0.0 -24.8 +29.1 +48.0
Steps
(reduced)
54
(54)
86
(0)
109
(23)
126
(40)
140
(54)
152
(66)
163
(77)
172
(0)
180
(8)
188
(16)
195
(23)
Approximation of harmonics in 86edt
Harmonic 13 14 15 16 17 18 19 20 21 22 23
Error Absolute (¢) +4.74 +9.14 +0.27 -0.88 +4.74 -5.75 -10.89 +10.89 -7.23 +0.69 -9.91
Relative (%) +21.4 +41.3 +1.2 -4.0 +21.4 -26.0 -49.2 +49.2 -32.7 +3.1 -44.8
Steps
(reduced)
201
(29)
207
(35)
212
(40)
217
(45)
222
(50)
226
(54)
230
(58)
235
(63)
238
(66)
242
(70)
245
(73)