85edt
Jump to navigation
Jump to search
Prime factorization
5 × 17
Step size
22.3759¢
Octave
54\85edt (1208.3¢)
Consistency limit
2
Distinct consistency limit
2
This page is a stub. You can help the Xenharmonic Wiki by expanding it. |
← 84edt | 85edt | 86edt → |
85 equal divisions of the tritave, perfect twelfth, or 3rd harmonic (abbreviated 85edt or 85ed3), is a nonoctave tuning system that divides the interval of 3/1 into 85 equal parts of about 22.4 ¢ each. Each step represents a frequency ratio of 31/85, or the 85th root of 3.
Intervals
Steps | Cents | Hekts | Approximate ratios |
---|---|---|---|
0 | 0 | 0 | 1/1 |
1 | 22.4 | 15.3 | |
2 | 44.8 | 30.6 | |
3 | 67.1 | 45.9 | 27/26 |
4 | 89.5 | 61.2 | 39/37, 41/39 |
5 | 111.9 | 76.5 | |
6 | 134.3 | 91.8 | |
7 | 156.6 | 107.1 | 23/21 |
8 | 179 | 122.4 | 41/37 |
9 | 201.4 | 137.6 | |
10 | 223.8 | 152.9 | 25/22, 33/29 |
11 | 246.1 | 168.2 | 38/33 |
12 | 268.5 | 183.5 | 7/6 |
13 | 290.9 | 198.8 | |
14 | 313.3 | 214.1 | 6/5 |
15 | 335.6 | 229.4 | |
16 | 358 | 244.7 | |
17 | 380.4 | 260 | |
18 | 402.8 | 275.3 | 29/23 |
19 | 425.1 | 290.6 | 23/18 |
20 | 447.5 | 305.9 | |
21 | 469.9 | 321.2 | 38/29 |
22 | 492.3 | 336.5 | |
23 | 514.6 | 351.8 | 31/23 |
24 | 537 | 367.1 | 15/11 |
25 | 559.4 | 382.4 | 29/21 |
26 | 581.8 | 397.6 | 7/5 |
27 | 604.2 | 412.9 | |
28 | 626.5 | 428.2 | 33/23 |
29 | 648.9 | 443.5 | |
30 | 671.3 | 458.8 | 31/21 |
31 | 693.7 | 474.1 | |
32 | 716 | 489.4 | |
33 | 738.4 | 504.7 | 23/15, 26/17 |
34 | 760.8 | 520 | |
35 | 783.2 | 535.3 | 11/7 |
36 | 805.5 | 550.6 | 35/22 |
37 | 827.9 | 565.9 | 29/18 |
38 | 850.3 | 581.2 | 18/11, 31/19 |
39 | 872.7 | 596.5 | |
40 | 895 | 611.8 | |
41 | 917.4 | 627.1 | |
42 | 939.8 | 642.4 | 31/18 |
43 | 962.2 | 657.6 | |
44 | 984.5 | 672.9 | |
45 | 1006.9 | 688.2 | 34/19 |
46 | 1029.3 | 703.5 | 38/21 |
47 | 1051.7 | 718.8 | 11/6 |
48 | 1074 | 734.1 | |
49 | 1096.4 | 749.4 | |
50 | 1118.8 | 764.7 | 21/11 |
51 | 1141.2 | 780 | 29/15 |
52 | 1163.5 | 795.3 | |
53 | 1185.9 | 810.6 | |
54 | 1208.3 | 825.9 | |
55 | 1230.7 | 841.2 | |
56 | 1253.1 | 856.5 | |
57 | 1275.4 | 871.8 | 23/11 |
58 | 1297.8 | 887.1 | |
59 | 1320.2 | 902.4 | 15/7 |
60 | 1342.6 | 917.6 | |
61 | 1364.9 | 932.9 | 11/5 |
62 | 1387.3 | 948.2 | |
63 | 1409.7 | 963.5 | |
64 | 1432.1 | 978.8 | |
65 | 1454.4 | 994.1 | |
66 | 1476.8 | 1009.4 | |
67 | 1499.2 | 1024.7 | |
68 | 1521.6 | 1040 | 41/17 |
69 | 1543.9 | 1055.3 | |
70 | 1566.3 | 1070.6 | |
71 | 1588.7 | 1085.9 | 5/2 |
72 | 1611.1 | 1101.2 | 38/15 |
73 | 1633.4 | 1116.5 | 18/7 |
74 | 1655.8 | 1131.8 | |
75 | 1678.2 | 1147.1 | 29/11 |
76 | 1700.6 | 1162.4 | |
77 | 1722.9 | 1177.6 | |
78 | 1745.3 | 1192.9 | |
79 | 1767.7 | 1208.2 | |
80 | 1790.1 | 1223.5 | |
81 | 1812.5 | 1238.8 | 37/13 |
82 | 1834.8 | 1254.1 | 26/9 |
83 | 1857.2 | 1269.4 | |
84 | 1879.6 | 1284.7 | |
85 | 1902 | 1300 | 3/1 |
Harmonics
Harmonic | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | +8.30 | +0.00 | -5.77 | +10.68 | +8.30 | +9.94 | +2.53 | +0.00 | -3.40 | +10.61 | -5.77 |
Relative (%) | +37.1 | +0.0 | -25.8 | +47.7 | +37.1 | +44.4 | +11.3 | +0.0 | -15.2 | +47.4 | -25.8 | |
Steps (reduced) |
54 (54) |
85 (0) |
107 (22) |
125 (40) |
139 (54) |
151 (66) |
161 (76) |
170 (0) |
178 (8) |
186 (16) |
192 (22) |
Harmonic | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | -10.09 | -4.13 | +10.68 | +10.83 | -4.62 | +8.30 | +4.20 | +4.90 | +9.94 | -3.47 | +9.08 |
Relative (%) | -45.1 | -18.5 | +47.7 | +48.4 | -20.7 | +37.1 | +18.8 | +21.9 | +44.4 | -15.5 | +40.6 | |
Steps (reduced) |
198 (28) |
204 (34) |
210 (40) |
215 (45) |
219 (49) |
224 (54) |
228 (58) |
232 (62) |
236 (66) |
239 (69) |
243 (73) |