84edt
Jump to navigation
Jump to search
Prime factorization
22 × 3 × 7
Step size
22.6423¢
Octave
53\84edt (1200.04¢)
(convergent)
Consistency limit
10
Distinct consistency limit
10
← 83edt | 84edt | 85edt → |
(convergent)
Division of the third harmonic into 84 equal parts (84EDT) is practically identical to 53 edo, but with the 3/1 rather than the 2/1 being just. The octave is about 0.0430 cents stretched and the step size is about 22.6423 cents.
Intervals
Steps | Cents | Approximate Ratios |
---|---|---|
0 | 0 | 1/1 |
1 | 22.642 | |
2 | 45.285 | 37/36, 38/37, 39/38, 40/39, 41/40 |
3 | 67.927 | 25/24, 26/25, 27/26 |
4 | 90.569 | 19/18, 20/19, 39/37 |
5 | 113.212 | 16/15 |
6 | 135.854 | 13/12, 27/25, 40/37 |
7 | 158.496 | 23/21, 34/31 |
8 | 181.139 | 10/9 |
9 | 203.781 | 9/8 |
10 | 226.423 | 33/29, 41/36 |
11 | 249.066 | 15/13, 37/32 |
12 | 271.708 | 41/35 |
13 | 294.35 | 32/27 |
14 | 316.993 | 6/5 |
15 | 339.635 | 28/23, 39/32 |
16 | 362.277 | 16/13, 37/30 |
17 | 384.919 | 5/4 |
18 | 407.562 | 19/15 |
19 | 430.204 | 32/25, 41/32 |
20 | 452.846 | 13/10 |
21 | 475.489 | 25/19, 29/22 |
22 | 498.131 | 4/3 |
23 | 520.773 | 23/17, 27/20 |
24 | 543.416 | 26/19, 37/27, 41/30 |
25 | 566.058 | 18/13, 25/18 |
26 | 588.7 | 38/27 |
27 | 611.343 | 27/19, 37/26 |
28 | 633.985 | 13/9, 36/25 |
29 | 656.627 | 19/13 |
30 | 679.27 | 34/23, 37/25, 40/27 |
31 | 701.912 | 3/2 |
32 | 724.554 | 35/23, 38/25, 41/27 |
33 | 747.197 | 20/13, 37/24 |
34 | 769.839 | 25/16, 39/25 |
35 | 792.481 | 30/19 |
36 | 815.124 | 8/5 |
37 | 837.766 | 13/8 |
38 | 860.408 | 23/14 |
39 | 883.051 | 5/3 |
40 | 905.693 | 27/16 |
41 | 928.335 | 41/24 |
42 | 950.978 | 26/15 |
43 | 973.62 | |
44 | 996.262 | 16/9 |
45 | 1018.904 | 9/5 |
46 | 1041.547 | 31/17 |
47 | 1064.189 | 24/13, 37/20 |
48 | 1086.831 | 15/8 |
49 | 1109.474 | 19/10 |
50 | 1132.116 | 25/13 |
51 | 1154.758 | 37/19, 39/20 |
52 | 1177.401 | |
53 | 1200.043 | 2/1 |
54 | 1222.685 | |
55 | 1245.328 | 37/18, 39/19, 41/20 |
56 | 1267.97 | 25/12, 27/13 |
57 | 1290.612 | 19/9, 40/19 |
58 | 1313.255 | 32/15 |
59 | 1335.897 | 13/6 |
60 | 1358.539 | |
61 | 1381.182 | 20/9 |
62 | 1403.824 | 9/4 |
63 | 1426.466 | 41/18 |
64 | 1449.109 | 30/13, 37/16 |
65 | 1471.751 | |
66 | 1494.393 | |
67 | 1517.036 | 12/5 |
68 | 1539.678 | 39/16 |
69 | 1562.32 | 32/13, 37/15 |
70 | 1584.963 | 5/2 |
71 | 1607.605 | 38/15 |
72 | 1630.247 | 41/16 |
73 | 1652.889 | 13/5 |
74 | 1675.532 | 29/11 |
75 | 1698.174 | 8/3 |
76 | 1720.816 | 27/10 |
77 | 1743.459 | 41/15 |
78 | 1766.101 | 25/9, 36/13 |
79 | 1788.743 | |
80 | 1811.386 | 37/13 |
81 | 1834.028 | 26/9 |
82 | 1856.67 | 38/13 |
83 | 1879.313 | |
84 | 1901.955 | 3/1 |
Harmonics
Harmonic | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | +0.04 | +0.00 | +0.09 | -1.31 | +0.04 | +4.88 | +0.13 | +0.00 | -1.27 | -7.77 | +0.09 |
Relative (%) | +0.2 | +0.0 | +0.4 | -5.8 | +0.2 | +21.6 | +0.6 | +0.0 | -5.6 | -34.3 | +0.4 | |
Steps (reduced) |
53 (53) |
84 (0) |
106 (22) |
123 (39) |
137 (53) |
149 (65) |
159 (75) |
168 (0) |
176 (8) |
183 (15) |
190 (22) |
Harmonic | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | -2.63 | +4.92 | -1.31 | +0.17 | +8.43 | +0.04 | -2.99 | -1.22 | +4.88 | -7.73 | +5.88 |
Relative (%) | -11.6 | +21.7 | -5.8 | +0.8 | +37.2 | +0.2 | -13.2 | -5.4 | +21.6 | -34.1 | +26.0 | |
Steps (reduced) |
196 (28) |
202 (34) |
207 (39) |
212 (44) |
217 (49) |
221 (53) |
225 (57) |
229 (61) |
233 (65) |
236 (68) |
240 (72) |