83edt
Jump to navigation
Jump to search
Prime factorization
83 (prime)
Step size
22.9151¢
Octave
52\83edt (1191.59¢)
Consistency limit
2
Distinct consistency limit
2
This page is a stub. You can help the Xenharmonic Wiki by expanding it. |
← 82edt | 83edt | 84edt → |
83 equal divisions of the tritave, perfect twelfth, or 3rd harmonic (abbreviated 83edt or 83ed3), is a nonoctave tuning system that divides the interval of 3/1 into 83 equal parts of about 22.9 ¢ each. Each step represents a frequency ratio of 31/83, or the 83rd root of 3.
Intervals
Steps | Cents | Hekts | Approximate ratios |
---|---|---|---|
0 | 0 | 0 | 1/1 |
1 | 22.9 | 15.7 | |
2 | 45.8 | 31.3 | |
3 | 68.7 | 47 | |
4 | 91.7 | 62.7 | 19/18, 20/19, 39/37 |
5 | 114.6 | 78.3 | 31/29 |
6 | 137.5 | 94 | |
7 | 160.4 | 109.6 | 23/21, 34/31 |
8 | 183.3 | 125.3 | 10/9 |
9 | 206.2 | 141 | |
10 | 229.2 | 156.6 | |
11 | 252.1 | 172.3 | 22/19 |
12 | 275 | 188 | 27/23, 34/29 |
13 | 297.9 | 203.6 | |
14 | 320.8 | 219.3 | |
15 | 343.7 | 234.9 | |
16 | 366.6 | 250.6 | 21/17 |
17 | 389.6 | 266.3 | |
18 | 412.5 | 281.9 | 33/26 |
19 | 435.4 | 297.6 | 9/7 |
20 | 458.3 | 313.3 | 30/23 |
21 | 481.2 | 328.9 | 29/22 |
22 | 504.1 | 344.6 | |
23 | 527 | 360.2 | 19/14 |
24 | 550 | 375.9 | |
25 | 572.9 | 391.6 | |
26 | 595.8 | 407.2 | 31/22 |
27 | 618.7 | 422.9 | 10/7 |
28 | 641.6 | 438.6 | 29/20 |
29 | 664.5 | 454.2 | |
30 | 687.5 | 469.9 | |
31 | 710.4 | 485.5 | |
32 | 733.3 | 501.2 | 26/17, 29/19 |
33 | 756.2 | 516.9 | 17/11, 31/20 |
34 | 779.1 | 532.5 | |
35 | 802 | 548.2 | 27/17 |
36 | 824.9 | 563.9 | 29/18, 37/23 |
37 | 847.9 | 579.5 | 31/19 |
38 | 870.8 | 595.2 | |
39 | 893.7 | 610.8 | |
40 | 916.6 | 626.5 | 17/10, 39/23 |
41 | 939.5 | 642.2 | 31/18 |
42 | 962.4 | 657.8 | |
43 | 985.4 | 673.5 | 23/13, 30/17 |
44 | 1008.3 | 689.2 | 34/19 |
45 | 1031.2 | 704.8 | |
46 | 1054.1 | 720.5 | |
47 | 1077 | 736.1 | |
48 | 1099.9 | 751.8 | 17/9 |
49 | 1122.8 | 767.5 | |
50 | 1145.8 | 783.1 | 33/17 |
51 | 1168.7 | 798.8 | |
52 | 1191.6 | 814.5 | |
53 | 1214.5 | 830.1 | |
54 | 1237.4 | 845.8 | |
55 | 1260.3 | 861.4 | 29/14 |
56 | 1283.2 | 877.1 | 21/10 |
57 | 1306.2 | 892.8 | |
58 | 1329.1 | 908.4 | |
59 | 1352 | 924.1 | |
60 | 1374.9 | 939.8 | 31/14 |
61 | 1397.8 | 955.4 | |
62 | 1420.7 | 971.1 | |
63 | 1443.7 | 986.7 | 23/10 |
64 | 1466.6 | 1002.4 | 7/3 |
65 | 1489.5 | 1018.1 | 26/11 |
66 | 1512.4 | 1033.7 | |
67 | 1535.3 | 1049.4 | 17/7 |
68 | 1558.2 | 1065.1 | |
69 | 1581.1 | 1080.7 | |
70 | 1604.1 | 1096.4 | |
71 | 1627 | 1112 | 23/9 |
72 | 1649.9 | 1127.7 | |
73 | 1672.8 | 1143.4 | |
74 | 1695.7 | 1159 | |
75 | 1718.6 | 1174.7 | 27/10 |
76 | 1741.5 | 1190.4 | |
77 | 1764.5 | 1206 | |
78 | 1787.4 | 1221.7 | |
79 | 1810.3 | 1237.3 | 37/13 |
80 | 1833.2 | 1253 | |
81 | 1856.1 | 1268.7 | |
82 | 1879 | 1284.3 | |
83 | 1902 | 1300 | 3/1 |
Harmonics
Harmonic | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | -8.4 | +0.0 | +6.1 | +9.3 | -8.4 | -0.3 | -2.3 | +0.0 | +0.9 | -3.7 | +6.1 |
Relative (%) | -36.7 | +0.0 | +26.6 | +40.7 | -36.7 | -1.3 | -10.2 | +0.0 | +4.0 | -16.1 | +26.6 | |
Steps (reduced) |
52 (52) |
83 (0) |
105 (22) |
122 (39) |
135 (52) |
147 (64) |
157 (74) |
166 (0) |
174 (8) |
181 (15) |
188 (22) |
Harmonic | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | +5.0 | -8.7 | +9.3 | -10.7 | -1.1 | -8.4 | -10.4 | -7.5 | -0.3 | +10.8 | +2.6 |
Relative (%) | +21.8 | -38.0 | +40.7 | -46.9 | -4.9 | -36.7 | -45.2 | -32.7 | -1.3 | +47.2 | +11.4 | |
Steps (reduced) |
194 (28) |
199 (33) |
205 (39) |
209 (43) |
214 (48) |
218 (52) |
222 (56) |
226 (60) |
230 (64) |
234 (68) |
237 (71) |