82edt
Jump to navigation
Jump to search
Prime factorization
2 × 41
Step size
23.1946¢
Octave
52\82edt (1206.12¢) (→26\41edt)
Consistency limit
2
Distinct consistency limit
2
This page is a stub. You can help the Xenharmonic Wiki by expanding it. |
← 81edt | 82edt | 83edt → |
82 equal divisions of the tritave, perfect twelfth, or 3rd harmonic (abbreviated 82edt or 82ed3), is a nonoctave tuning system that divides the interval of 3/1 into 82 equal parts of about 23.2 ¢ each. Each step represents a frequency ratio of 31/82, or the 82nd root of 3.
Intervals
Steps | Cents | Hekts | Approximate ratios |
---|---|---|---|
0 | 0 | 0 | 1/1 |
1 | 23.2 | 15.9 | |
2 | 46.4 | 31.7 | 37/36, 38/37 |
3 | 69.6 | 47.6 | 26/25 |
4 | 92.8 | 63.4 | 19/18 |
5 | 116 | 79.3 | 31/29 |
6 | 139.2 | 95.1 | |
7 | 162.4 | 111 | 11/10, 34/31 |
8 | 185.6 | 126.8 | 39/35 |
9 | 208.8 | 142.7 | 35/31 |
10 | 231.9 | 158.5 | |
11 | 255.1 | 174.4 | 22/19, 29/25 |
12 | 278.3 | 190.2 | 27/23, 34/29 |
13 | 301.5 | 206.1 | 25/21, 31/26 |
14 | 324.7 | 222 | 35/29 |
15 | 347.9 | 237.8 | 11/9 |
16 | 371.1 | 253.7 | 26/21, 31/25 |
17 | 394.3 | 269.5 | |
18 | 417.5 | 285.4 | 14/11 |
19 | 440.7 | 301.2 | |
20 | 463.9 | 317.1 | 17/13 |
21 | 487.1 | 332.9 | |
22 | 510.3 | 348.8 | 39/29 |
23 | 533.5 | 364.6 | 34/25 |
24 | 556.7 | 380.5 | 29/21 |
25 | 579.9 | 396.3 | 7/5 |
26 | 603.1 | 412.2 | |
27 | 626.3 | 428 | 33/23 |
28 | 649.4 | 443.9 | |
29 | 672.6 | 459.8 | 28/19, 31/21 |
30 | 695.8 | 475.6 | |
31 | 719 | 491.5 | |
32 | 742.2 | 507.3 | 23/15 |
33 | 765.4 | 523.2 | 14/9 |
34 | 788.6 | 539 | 30/19 |
35 | 811.8 | 554.9 | |
36 | 835 | 570.7 | 34/21 |
37 | 858.2 | 586.6 | 23/14 |
38 | 881.4 | 602.4 | 5/3 |
39 | 904.6 | 618.3 | |
40 | 927.8 | 634.1 | |
41 | 951 | 650 | 26/15 |
42 | 974.2 | 665.9 | |
43 | 997.4 | 681.7 | |
44 | 1020.6 | 697.6 | 9/5 |
45 | 1043.8 | 713.4 | |
46 | 1067 | 729.3 | 37/20 |
47 | 1090.1 | 745.1 | |
48 | 1113.3 | 761 | 19/10 |
49 | 1136.5 | 776.8 | 27/14 |
50 | 1159.7 | 792.7 | |
51 | 1182.9 | 808.5 | |
52 | 1206.1 | 824.4 | |
53 | 1229.3 | 840.2 | |
54 | 1252.5 | 856.1 | 35/17 |
55 | 1275.7 | 872 | 23/11 |
56 | 1298.9 | 887.8 | |
57 | 1322.1 | 903.7 | 15/7 |
58 | 1345.3 | 919.5 | |
59 | 1368.5 | 935.4 | |
60 | 1391.7 | 951.2 | 29/13 |
61 | 1414.9 | 967.1 | 34/15 |
62 | 1438.1 | 982.9 | 39/17 |
63 | 1461.3 | 998.8 | |
64 | 1484.5 | 1014.6 | 33/14 |
65 | 1507.6 | 1030.5 | |
66 | 1530.8 | 1046.3 | |
67 | 1554 | 1062.2 | 27/11 |
68 | 1577.2 | 1078 | |
69 | 1600.4 | 1093.9 | |
70 | 1623.6 | 1109.8 | 23/9 |
71 | 1646.8 | 1125.6 | |
72 | 1670 | 1141.5 | |
73 | 1693.2 | 1157.3 | |
74 | 1716.4 | 1173.2 | 35/13 |
75 | 1739.6 | 1189 | 30/11 |
76 | 1762.8 | 1204.9 | |
77 | 1786 | 1220.7 | |
78 | 1809.2 | 1236.6 | |
79 | 1832.4 | 1252.4 | |
80 | 1855.6 | 1268.3 | |
81 | 1878.8 | 1284.1 | |
82 | 1902 | 1300 | 3/1 |
Harmonics
Harmonic | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | +6.1 | +0.0 | -11.0 | -3.0 | +6.1 | -5.6 | -4.8 | +0.0 | +3.2 | +0.5 | -11.0 |
Relative (%) | +26.4 | +0.0 | -47.2 | -12.8 | +26.4 | -24.2 | -20.9 | +0.0 | +13.6 | +2.2 | -47.2 | |
Steps (reduced) |
52 (52) |
82 (0) |
103 (21) |
120 (38) |
134 (52) |
145 (63) |
155 (73) |
164 (0) |
172 (8) |
179 (15) |
185 (21) |
Harmonic | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | -10.4 | +0.5 | -3.0 | +1.3 | -10.9 | +6.1 | +5.3 | +9.3 | -5.6 | +6.6 | -0.7 |
Relative (%) | -44.7 | +2.2 | -12.8 | +5.5 | -47.0 | +26.4 | +22.8 | +40.0 | -24.2 | +28.6 | -3.2 | |
Steps (reduced) |
191 (27) |
197 (33) |
202 (38) |
207 (43) |
211 (47) |
216 (52) |
220 (56) |
224 (60) |
227 (63) |
231 (67) |
234 (70) |