81edt
Jump to navigation
Jump to search
Prime factorization
34
Step size
23.4809¢
Octave
51\81edt (1197.53¢) (→17\27edt)
Consistency limit
4
Distinct consistency limit
4
This page is a stub. You can help the Xenharmonic Wiki by expanding it. |
← 80edt | 81edt | 82edt → |
81 equal divisions of the tritave, perfect twelfth, or 3rd harmonic (abbreviated 81edt or 81ed3), is a nonoctave tuning system that divides the interval of 3/1 into 81 equal parts of about 23.5 ¢ each. Each step represents a frequency ratio of 31/81, or the 81st root of 3.
Intervals
Steps | Cents | Hekts | Approximate ratios |
---|---|---|---|
0 | 0 | 0 | 1/1 |
1 | 23.5 | 16 | |
2 | 47 | 32.1 | 36/35, 37/36, 38/37, 39/38, 40/39 |
3 | 70.4 | 48.1 | |
4 | 93.9 | 64.2 | 19/18, 37/35, 39/37 |
5 | 117.4 | 80.2 | 31/29 |
6 | 140.9 | 96.3 | 13/12, 38/35 |
7 | 164.4 | 112.3 | 11/10 |
8 | 187.8 | 128.4 | 29/26, 39/35 |
9 | 211.3 | 144.4 | 26/23, 35/31 |
10 | 234.8 | 160.5 | 39/34 |
11 | 258.3 | 176.5 | 36/31 |
12 | 281.8 | 192.6 | 20/17 |
13 | 305.3 | 208.6 | 31/26, 37/31 |
14 | 328.7 | 224.7 | 23/19, 29/24, 35/29 |
15 | 352.2 | 240.7 | 27/22, 38/31 |
16 | 375.7 | 256.8 | 36/29 |
17 | 399.2 | 272.8 | 29/23, 34/27, 39/31 |
18 | 422.7 | 288.9 | 23/18, 37/29 |
19 | 446.1 | 304.9 | 22/17, 31/24, 35/27 |
20 | 469.6 | 321 | 21/16, 38/29 |
21 | 493.1 | 337 | |
22 | 516.6 | 353.1 | 27/20, 31/23, 35/26 |
23 | 540.1 | 369.1 | 15/11, 26/19 |
24 | 563.5 | 385.2 | 18/13 |
25 | 587 | 401.2 | |
26 | 610.5 | 417.3 | 27/19, 37/26 |
27 | 634 | 433.3 | 13/9 |
28 | 657.5 | 449.4 | 19/13 |
29 | 680.9 | 465.4 | 40/27 |
30 | 704.4 | 481.5 | 3/2 |
31 | 727.9 | 497.5 | 32/21, 35/23 |
32 | 751.4 | 513.6 | 17/11, 37/24 |
33 | 774.9 | 529.6 | 36/23 |
34 | 798.4 | 545.7 | 19/12, 27/17 |
35 | 821.8 | 561.7 | 37/23 |
36 | 845.3 | 577.8 | 31/19 |
37 | 868.8 | 593.8 | 33/20, 38/23 |
38 | 892.3 | 609.9 | |
39 | 915.8 | 625.9 | 17/10, 39/23 |
40 | 939.2 | 642 | 31/18 |
41 | 962.7 | 658 | |
42 | 986.2 | 674.1 | 23/13, 30/17 |
43 | 1009.7 | 690.1 | 34/19 |
44 | 1033.2 | 706.2 | 20/11 |
45 | 1056.6 | 722.2 | 35/19 |
46 | 1080.1 | 738.3 | |
47 | 1103.6 | 754.3 | 17/9, 36/19 |
48 | 1127.1 | 770.4 | 23/12 |
49 | 1150.6 | 786.4 | 33/17, 35/18 |
50 | 1174 | 802.5 | |
51 | 1197.5 | 818.5 | 2/1 |
52 | 1221 | 834.6 | |
53 | 1244.5 | 850.6 | 37/18, 39/19 |
54 | 1268 | 866.7 | 27/13 |
55 | 1291.5 | 882.7 | 19/9, 40/19 |
56 | 1314.9 | 898.8 | |
57 | 1338.4 | 914.8 | 13/6 |
58 | 1361.9 | 930.9 | 11/5 |
59 | 1385.4 | 946.9 | 20/9 |
60 | 1408.9 | 963 | |
61 | 1432.3 | 979 | 16/7 |
62 | 1455.8 | 995.1 | |
63 | 1479.3 | 1011.1 | 40/17 |
64 | 1502.8 | 1027.2 | 31/13 |
65 | 1526.3 | 1043.2 | 29/12 |
66 | 1549.7 | 1059.3 | 22/9 |
67 | 1573.2 | 1075.3 | |
68 | 1596.7 | 1091.4 | |
69 | 1620.2 | 1107.4 | |
70 | 1643.7 | 1123.5 | 31/12 |
71 | 1667.1 | 1139.5 | 34/13 |
72 | 1690.6 | 1155.6 | |
73 | 1714.1 | 1171.6 | 35/13 |
74 | 1737.6 | 1187.7 | 30/11 |
75 | 1761.1 | 1203.7 | 36/13 |
76 | 1784.6 | 1219.8 | |
77 | 1808 | 1235.8 | 37/13 |
78 | 1831.5 | 1251.9 | |
79 | 1855 | 1267.9 | 35/12, 38/13 |
80 | 1878.5 | 1284 | |
81 | 1902 | 1300 | 3/1 |
Harmonics
Harmonic | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | -2.5 | +0.0 | -4.9 | +7.9 | -2.5 | -11.1 | -7.4 | +0.0 | +5.4 | +4.8 | -4.9 |
Relative (%) | -10.5 | +0.0 | -21.1 | +33.7 | -10.5 | -47.1 | -31.6 | +0.0 | +23.2 | +20.5 | -21.1 | |
Steps (reduced) |
51 (51) |
81 (0) |
102 (21) |
119 (38) |
132 (51) |
143 (62) |
153 (72) |
162 (0) |
170 (8) |
177 (15) |
183 (21) |
Harmonic | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | -2.6 | +10.0 | +7.9 | -9.9 | +2.6 | -2.5 | -2.2 | +3.0 | -11.1 | +2.3 | -4.2 |
Relative (%) | -11.2 | +42.4 | +33.7 | -42.1 | +10.9 | -10.5 | -9.2 | +12.7 | -47.1 | +9.9 | -17.8 | |
Steps (reduced) |
189 (27) |
195 (33) |
200 (38) |
204 (42) |
209 (47) |
213 (51) |
217 (55) |
221 (59) |
224 (62) |
228 (66) |
231 (69) |