80edt
Jump to navigation
Jump to search
Prime factorization
24 × 5
Step size
23.7744¢
Octave
50\80edt (1188.72¢) (→5\8edt)
Consistency limit
2
Distinct consistency limit
2
This page is a stub. You can help the Xenharmonic Wiki by expanding it. |
← 79edt | 80edt | 81edt → |
80 equal divisions of the tritave, perfect twelfth, or 3rd harmonic (abbreviated 80edt or 80ed3), is a nonoctave tuning system that divides the interval of 3/1 into 80 equal parts of about 23.8 ¢ each. Each step represents a frequency ratio of 31/80, or the 80th root of 3.
Intervals
Steps | Cents | Approximate Ratios |
---|---|---|
0 | 0 | 1/1 |
1 | 23.774 | |
2 | 47.549 | |
3 | 71.323 | |
4 | 95.098 | 19/18, 37/35 |
5 | 118.872 | 15/14 |
6 | 142.647 | 25/23 |
7 | 166.421 | |
8 | 190.196 | 19/17, 29/26, 39/35 |
9 | 213.97 | 17/15, 26/23 |
10 | 237.744 | 31/27 |
11 | 261.519 | |
12 | 285.293 | |
13 | 309.068 | 37/31 |
14 | 332.842 | 23/19 |
15 | 356.617 | 27/22 |
16 | 380.391 | |
17 | 404.165 | 29/23 |
18 | 427.94 | |
19 | 451.714 | 35/27 |
20 | 475.489 | 25/19, 29/22 |
21 | 499.263 | |
22 | 523.038 | 23/17 |
23 | 546.812 | 37/27 |
24 | 570.587 | 25/18 |
25 | 594.361 | 31/22 |
26 | 618.135 | |
27 | 641.91 | |
28 | 665.684 | 22/15, 25/17 |
29 | 689.459 | |
30 | 713.233 | |
31 | 737.008 | 23/15, 26/17 |
32 | 760.782 | |
33 | 784.556 | 11/7 |
34 | 808.331 | |
35 | 832.105 | 21/13 |
36 | 855.88 | |
37 | 879.654 | |
38 | 903.429 | |
39 | 927.203 | 29/17 |
40 | 950.978 | 26/15 |
41 | 974.752 | |
42 | 998.526 | |
43 | 1022.301 | |
44 | 1046.075 | |
45 | 1069.85 | 13/7 |
46 | 1093.624 | |
47 | 1117.399 | 21/11 |
48 | 1141.173 | 29/15 |
49 | 1164.947 | |
50 | 1188.722 | |
51 | 1212.496 | |
52 | 1236.271 | |
53 | 1260.045 | 29/14 |
54 | 1283.82 | |
55 | 1307.594 | |
56 | 1331.369 | |
57 | 1355.143 | |
58 | 1378.917 | 31/14 |
59 | 1402.692 | |
60 | 1426.466 | |
61 | 1450.241 | |
62 | 1474.015 | |
63 | 1497.79 | |
64 | 1521.564 | |
65 | 1545.338 | 22/9 |
66 | 1569.113 | |
67 | 1592.887 | |
68 | 1616.662 | |
69 | 1640.436 | |
70 | 1664.211 | |
71 | 1687.985 | |
72 | 1711.76 | 35/13 |
73 | 1735.534 | |
74 | 1759.308 | |
75 | 1783.083 | 14/5 |
76 | 1806.857 | |
77 | 1830.632 | |
78 | 1854.406 | |
79 | 1878.181 | |
80 | 1901.955 | 3/1 |
Harmonics
Harmonic | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | -11.3 | +0.0 | +1.2 | -4.7 | -11.3 | +7.1 | -10.1 | +0.0 | +7.8 | +9.2 | +1.2 |
Relative (%) | -47.4 | +0.0 | +5.1 | -19.8 | -47.4 | +30.1 | -42.3 | +0.0 | +32.8 | +38.7 | +5.1 | |
Steps (reduced) |
50 (50) |
80 (0) |
101 (21) |
117 (37) |
130 (50) |
142 (62) |
151 (71) |
160 (0) |
168 (8) |
175 (15) |
181 (21) |
Harmonic | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | +5.3 | -4.1 | -4.7 | +2.4 | -7.4 | -11.3 | -9.8 | -3.5 | +7.1 | -2.1 | -7.7 |
Relative (%) | +22.3 | -17.4 | -19.8 | +10.2 | -31.2 | -47.4 | -41.2 | -14.7 | +30.1 | -8.7 | -32.4 | |
Steps (reduced) |
187 (27) |
192 (32) |
197 (37) |
202 (42) |
206 (46) |
210 (50) |
214 (54) |
218 (58) |
222 (62) |
225 (65) |
228 (68) |