80edt
Jump to navigation
Jump to search
Prime factorization
24 × 5
Step size
23.7744¢
Octave
50\80edt (1188.72¢) (→5\8edt)
Consistency limit
2
Distinct consistency limit
2
This page is a stub. You can help the Xenharmonic Wiki by expanding it. |
← 79edt | 80edt | 81edt → |
80 equal divisions of the tritave, perfect twelfth, or 3rd harmonic (abbreviated 80edt or 80ed3), is a nonoctave tuning system that divides the interval of 3/1 into 80 equal parts of about 23.8 ¢ each. Each step represents a frequency ratio of 31/80, or the 80th root of 3.
Intervals
Steps | Cents | Hekts | Approximate ratios |
---|---|---|---|
0 | 0 | 0 | 1/1 |
1 | 23.8 | 16.3 | |
2 | 47.5 | 32.5 | |
3 | 71.3 | 48.8 | |
4 | 95.1 | 65 | 19/18, 37/35 |
5 | 118.9 | 81.3 | 15/14 |
6 | 142.6 | 97.5 | 25/23 |
7 | 166.4 | 113.8 | |
8 | 190.2 | 130 | 19/17, 29/26, 39/35 |
9 | 214 | 146.3 | 17/15, 26/23 |
10 | 237.7 | 162.5 | 31/27 |
11 | 261.5 | 178.8 | |
12 | 285.3 | 195 | |
13 | 309.1 | 211.3 | 37/31 |
14 | 332.8 | 227.5 | 23/19 |
15 | 356.6 | 243.8 | 27/22 |
16 | 380.4 | 260 | |
17 | 404.2 | 276.3 | 29/23 |
18 | 427.9 | 292.5 | |
19 | 451.7 | 308.8 | 35/27 |
20 | 475.5 | 325 | 25/19, 29/22 |
21 | 499.3 | 341.3 | |
22 | 523 | 357.5 | 23/17 |
23 | 546.8 | 373.8 | 37/27 |
24 | 570.6 | 390 | 25/18 |
25 | 594.4 | 406.3 | 31/22 |
26 | 618.1 | 422.5 | |
27 | 641.9 | 438.8 | |
28 | 665.7 | 455 | 22/15, 25/17 |
29 | 689.5 | 471.3 | |
30 | 713.2 | 487.5 | |
31 | 737 | 503.7 | 23/15, 26/17 |
32 | 760.8 | 520 | |
33 | 784.6 | 536.3 | 11/7 |
34 | 808.3 | 552.5 | |
35 | 832.1 | 568.8 | 21/13 |
36 | 855.9 | 585 | |
37 | 879.7 | 601.3 | |
38 | 903.4 | 617.5 | |
39 | 927.2 | 633.8 | 29/17 |
40 | 951 | 650 | 26/15 |
41 | 974.8 | 666.3 | |
42 | 998.5 | 682.5 | |
43 | 1022.3 | 698.8 | |
44 | 1046.1 | 715 | |
45 | 1069.8 | 731.3 | 13/7 |
46 | 1093.6 | 747.5 | |
47 | 1117.4 | 763.8 | 21/11 |
48 | 1141.2 | 780 | 29/15 |
49 | 1164.9 | 796.3 | |
50 | 1188.7 | 812.5 | |
51 | 1212.5 | 828.8 | |
52 | 1236.3 | 845 | |
53 | 1260 | 861.3 | 29/14 |
54 | 1283.8 | 877.5 | |
55 | 1307.6 | 893.8 | |
56 | 1331.4 | 910 | |
57 | 1355.1 | 926.3 | |
58 | 1378.9 | 942.5 | 31/14 |
59 | 1402.7 | 958.7 | |
60 | 1426.5 | 975 | |
61 | 1450.2 | 991.3 | |
62 | 1474 | 1007.5 | |
63 | 1497.8 | 1023.8 | |
64 | 1521.6 | 1040 | |
65 | 1545.3 | 1056.3 | 22/9 |
66 | 1569.1 | 1072.5 | |
67 | 1592.9 | 1088.8 | |
68 | 1616.7 | 1105 | |
69 | 1640.4 | 1121.3 | |
70 | 1664.2 | 1137.5 | |
71 | 1688 | 1153.8 | |
72 | 1711.8 | 1170 | 35/13 |
73 | 1735.5 | 1186.3 | |
74 | 1759.3 | 1202.5 | |
75 | 1783.1 | 1218.8 | 14/5 |
76 | 1806.9 | 1235 | |
77 | 1830.6 | 1251.3 | |
78 | 1854.4 | 1267.5 | |
79 | 1878.2 | 1283.8 | |
80 | 1902 | 1300 | 3/1 |
Harmonics
Harmonic | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | -11.3 | +0.0 | +1.2 | -4.7 | -11.3 | +7.1 | -10.1 | +0.0 | +7.8 | +9.2 | +1.2 |
Relative (%) | -47.4 | +0.0 | +5.1 | -19.8 | -47.4 | +30.1 | -42.3 | +0.0 | +32.8 | +38.7 | +5.1 | |
Steps (reduced) |
50 (50) |
80 (0) |
101 (21) |
117 (37) |
130 (50) |
142 (62) |
151 (71) |
160 (0) |
168 (8) |
175 (15) |
181 (21) |
Harmonic | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | +5.3 | -4.1 | -4.7 | +2.4 | -7.4 | -11.3 | -9.8 | -3.5 | +7.1 | -2.1 | -7.7 |
Relative (%) | +22.3 | -17.4 | -19.8 | +10.2 | -31.2 | -47.4 | -41.2 | -14.7 | +30.1 | -8.7 | -32.4 | |
Steps (reduced) |
187 (27) |
192 (32) |
197 (37) |
202 (42) |
206 (46) |
210 (50) |
214 (54) |
218 (58) |
222 (62) |
225 (65) |
228 (68) |