79edt

From Xenharmonic Wiki
Jump to navigation Jump to search
← 78edt79edt80edt →
Prime factorization 79 (prime)
Step size 24.0754¢ 
Octave 50\79edt (1203.77¢)
Consistency limit 10
Distinct consistency limit 8

Division of the third harmonic into 79 equal parts (79EDT) is related to 50 edo, but with the 3/1 rather than the 2/1 being just. The octave is about 3.7690 cents stretched and the step size is about 24.0754 cents. It is consistent to the 10-integer-limit.

Additionally, it is an 18-strong consistent circle of the interval 17/15.

Lookalikes: 50edo, 116ed5, 129ed6, 140ed7, 29edf

Intervals

Steps Cents Approximate Ratios
0 0 1/1
1 24.075
2 48.151 35/34, 36/35, 37/36, 38/37
3 72.226 25/24
4 96.302 18/17, 19/18, 37/35
5 120.377 15/14
6 144.452 37/34, 38/35
7 168.528
8 192.603 19/17
9 216.678 17/15
10 240.754 31/27
11 264.829 7/6
12 288.905 13/11
13 312.98 6/5
14 337.055 17/14
15 361.131 37/30
16 385.206 5/4
17 409.281 19/15
18 433.357 9/7
19 457.432
20 481.508 29/22, 37/28
21 505.583
22 529.658 19/14, 34/25
23 553.734
24 577.809
25 601.884 17/12
26 625.96 33/23
27 650.035 35/24
28 674.111 28/19, 31/21
29 698.186
30 722.261 38/25
31 746.337 37/24
32 770.412 25/16
33 794.488 19/12
34 818.563
35 842.638
36 866.714 28/17
37 890.789
38 914.864 39/23
39 938.94 31/18
40 963.015
41 987.091 23/13
42 1011.166
43 1035.241
44 1059.317 35/19
45 1083.392 28/15
46 1107.467 36/19
47 1131.543
48 1155.618 37/19
49 1179.694
50 1203.769
51 1227.844
52 1251.92 35/17
53 1275.995 23/11
54 1300.071 36/17
55 1324.146
56 1348.221 37/17
57 1372.297
58 1396.372
59 1420.447
60 1444.523
61 1468.598 7/3
62 1492.674
63 1516.749 12/5
64 1540.824
65 1564.9 37/15
66 1588.975 5/2
67 1613.05 33/13
68 1637.126 18/7
69 1661.201
70 1685.277 37/14
71 1709.352
72 1733.427
73 1757.503
74 1781.578 14/5
75 1805.653 17/6
76 1829.729
77 1853.804 35/12
78 1877.88
79 1901.955 3/1

Harmonics

79edt's representation of most primes is rather mediocre, however it has the property that many prime harmonics lie close to a quarter of the way or halfway between its steps, which is important in that 316edt, which quadruples it, is one of the strongest systems less than 1000 notes in the no-twos 19-limit, and among them has the best representation of primes beyond 19.

Approximation of prime harmonics in 79edt
Harmonic 2 3 5 7 11 13 17 19 23
Error Absolute (¢) +3.8 +0.0 +6.4 +1.7 -10.4 -10.7 +6.4 +6.5 -11.3
Relative (%) +15.7 +0.0 +26.7 +7.2 -43.0 -44.3 +26.7 +26.9 -47.0
Steps
(reduced)
50
(50)
79
(0)
116
(37)
140
(61)
172
(14)
184
(26)
204
(46)
212
(54)
225
(67)
Approximation of odd harmonics in 79edt
Harmonic 25 27 29 31 33 35 37 39 41 43 45
Error Absolute (¢) -11.2 +0.0 -3.3 +1.6 -10.4 +8.2 +8.3 -10.7 -0.9 -11.2 +6.4
Relative (%) -46.6 +0.0 -13.9 +6.6 -43.0 +33.9 +34.3 -44.3 -3.9 -46.4 +26.7
Steps
(reduced)
231
(73)
237
(0)
242
(5)
247
(10)
251
(14)
256
(19)
260
(23)
263
(26)
267
(30)
270
(33)
274
(37)