316edt

From Xenharmonic Wiki
Jump to navigation Jump to search
Icon-Stub.png This page is a stub. You can help the Xenharmonic Wiki by expanding it.
← 315edt 316edt 317edt →
Prime factorization 22 × 79
Step size 6.01884¢ 
Octave 199\316edt (1197.75¢)
Consistency limit 2
Distinct consistency limit 2

316 equal divisions of the tritave, perfect twelfth, or 3rd harmonic (abbreviated 316edt or 316ed3), is a nonoctave tuning system that divides the interval of 3/1 into 316 equal parts of about 6.02⁠ ⁠¢ each. Each step represents a frequency ratio of 31/316, or the 316th root of 3.

Intervals

Steps Cents Hekts Approximate ratios
0 0 0 1/1
1 6.02 4.11
2 12.04 8.23
3 18.06 12.34 99/98
4 24.08 16.46
5 30.09 20.57 58/57
6 36.11 24.68
7 42.13 28.8 42/41
8 48.15 32.91
9 54.17 37.03 65/63, 98/95
10 60.19 41.14
11 66.21 45.25
12 72.23 49.37
13 78.24 53.48 45/43, 91/87
14 84.26 57.59
15 90.28 61.71 98/93
16 96.3 65.82 37/35
17 102.32 69.94 35/33
18 108.34 74.05 33/31
19 114.36 78.16 47/44
20 120.38 82.28
21 126.4 86.39
22 132.41 90.51
23 138.43 94.62
24 144.45 98.73 25/23
25 150.47 102.85
26 156.49 106.96 81/74
27 162.51 111.08
28 168.53 115.19 43/39
29 174.55 119.3 52/47
30 180.57 123.42
31 186.58 127.53
32 192.6 131.65 19/17
33 198.62 135.76 37/33, 46/41
34 204.64 139.87
35 210.66 143.99 35/31
36 216.68 148.1 17/15
37 222.7 152.22 58/51
38 228.72 156.33
39 234.73 160.44 63/55
40 240.75 164.56 54/47
41 246.77 168.67 98/85
42 252.79 172.78 81/70
43 258.81 176.9
44 264.83 181.01
45 270.85 185.13
46 276.87 189.24
47 282.89 193.35
48 288.9 197.47 13/11
49 294.92 201.58 51/43
50 300.94 205.7 69/58
51 306.96 209.81
52 312.98 213.92
53 319 218.04
54 325.02 222.15 35/29
55 331.04 226.27 23/19
56 337.06 230.38
57 343.07 234.49 50/41
58 349.09 238.61
59 355.11 242.72 27/22, 70/57
60 361.13 246.84 85/69
61 367.15 250.95
62 373.17 255.06
63 379.19 259.18
64 385.21 263.29
65 391.22 267.41
66 397.24 271.52 39/31
67 403.26 275.63
68 409.28 279.75 19/15
69 415.3 283.86
70 421.32 287.97 37/29
71 427.34 292.09
72 433.36 296.2
73 439.38 300.32 58/45
74 445.39 304.43 75/58
75 451.41 308.54 74/57
76 457.43 312.66
77 463.45 316.77 98/75
78 469.47 320.89
79 475.49 325 25/19
80 481.51 329.11
81 487.53 333.23 57/43
82 493.55 337.34
83 499.56 341.46
84 505.58 345.57
85 511.6 349.68
86 517.62 353.8 58/43
87 523.64 357.91 23/17
88 529.66 362.03
89 535.68 366.14
90 541.7 370.25
91 547.71 374.37 70/51
92 553.73 378.48 95/69
93 559.75 382.59
94 565.77 386.71
95 571.79 390.82
96 577.81 394.94 81/58
97 583.83 399.05
98 589.85 403.16
99 595.87 407.28
100 601.88 411.39
101 607.9 415.51 27/19, 98/69
102 613.92 419.62
103 619.94 423.73 93/65
104 625.96 427.85
105 631.98 431.96
106 638 436.08
107 644.02 440.19 74/51
108 650.04 444.3
109 656.05 448.42
110 662.07 452.53 85/58
111 668.09 456.65 25/17
112 674.11 460.76 31/21
113 680.13 464.87
114 686.15 468.99 55/37
115 692.17 473.1 85/57
116 698.19 477.22
117 704.2 481.33
118 710.22 485.44 98/65
119 716.24 489.56 62/41
120 722.26 493.67
121 728.28 497.78 99/65
122 734.3 501.9
123 740.32 506.01 23/15
124 746.34 510.13
125 752.36 514.24
126 758.37 518.35
127 764.39 522.47 14/9
128 770.41 526.58 39/25
129 776.43 530.7
130 782.45 534.81 11/7
131 788.47 538.92 41/26
132 794.49 543.04 87/55
133 800.51 547.15 27/17
134 806.53 551.27
135 812.54 555.38
136 818.56 559.49 69/43
137 824.58 563.61 66/41
138 830.6 567.72 21/13
139 836.62 571.84
140 842.64 575.95
141 848.66 580.06
142 854.68 584.18 95/58
143 860.69 588.29 74/45
144 866.71 592.41
145 872.73 596.52
146 878.75 600.63
147 884.77 604.75 5/3
148 890.79 608.86
149 896.81 612.97 47/28
150 902.83 617.09
151 908.85 621.2 93/55
152 914.86 625.32
153 920.88 629.43 63/37
154 926.9 633.54
155 932.92 637.66
156 938.94 641.77 43/25
157 944.96 645.89
158 950.98 650
159 957 654.11
160 963.02 658.23 75/43, 82/47
161 969.03 662.34
162 975.05 666.46 65/37
163 981.07 670.57 37/21
164 987.09 674.68
165 993.11 678.8 55/31
166 999.13 682.91
167 1005.15 687.03 84/47
168 1011.17 691.14
169 1017.18 695.25 9/5
170 1023.2 699.37
171 1029.22 703.48
172 1035.24 707.59
173 1041.26 711.71
174 1047.28 715.82
175 1053.3 719.94
176 1059.32 724.05
177 1065.34 728.16
178 1071.35 732.28 13/7
179 1077.37 736.39 41/22, 95/51
180 1083.39 740.51 43/23
181 1089.41 744.62
182 1095.43 748.73
183 1101.45 752.85 17/9
184 1107.47 756.96 55/29
185 1113.49 761.08 78/41
186 1119.51 765.19 21/11
187 1125.52 769.3
188 1131.54 773.42 25/13
189 1137.56 777.53 27/14
190 1143.58 781.65
191 1149.6 785.76
192 1155.62 789.87
193 1161.64 793.99 45/23
194 1167.66 798.1
195 1173.67 802.22 65/33
196 1179.69 806.33 85/43
197 1185.71 810.44
198 1191.73 814.56
199 1197.75 818.67
200 1203.77 822.78
201 1209.79 826.9
202 1215.81 831.01
203 1221.83 835.13
204 1227.84 839.24 63/31
205 1233.86 843.35 51/25
206 1239.88 847.47
207 1245.9 851.58
208 1251.92 855.7
209 1257.94 859.81
210 1263.96 863.92
211 1269.98 868.04
212 1276 872.15
213 1282.01 876.27 65/31, 86/41
214 1288.03 880.38
215 1294.05 884.49 19/9
216 1300.07 888.61
217 1306.09 892.72
218 1312.11 896.84
219 1318.13 900.95
220 1324.15 905.06 58/27
221 1330.16 909.18
222 1336.18 913.29
223 1342.2 917.41
224 1348.22 921.52 85/39
225 1354.24 925.63
226 1360.26 929.75
227 1366.28 933.86
228 1372.3 937.97 95/43
229 1378.32 942.09 51/23
230 1384.33 946.2
231 1390.35 950.32
232 1396.37 954.43
233 1402.39 958.54
234 1408.41 962.66
235 1414.43 966.77 43/19
236 1420.45 970.89
237 1426.47 975 57/25, 98/43
238 1432.49 979.11
239 1438.5 983.23
240 1444.52 987.34
241 1450.54 991.46
242 1456.56 995.57 58/25
243 1462.58 999.68
244 1468.6 1003.8
245 1474.62 1007.91
246 1480.64 1012.03 87/37
247 1486.65 1016.14
248 1492.67 1020.25 45/19
249 1498.69 1024.37
250 1504.71 1028.48 31/13
251 1510.73 1032.59
252 1516.75 1036.71
253 1522.77 1040.82
254 1528.79 1044.94
255 1534.81 1049.05
256 1540.82 1053.16 95/39
257 1546.84 1057.28 22/9
258 1552.86 1061.39
259 1558.88 1065.51
260 1564.9 1069.62
261 1570.92 1073.73 57/23
262 1576.94 1077.85 87/35
263 1582.96 1081.96
264 1588.98 1086.08
265 1594.99 1090.19 98/39
266 1601.01 1094.3 58/23
267 1607.03 1098.42 43/17
268 1613.05 1102.53 33/13
269 1619.07 1106.65
270 1625.09 1110.76
271 1631.11 1114.87
272 1637.13 1118.99
273 1643.14 1123.1
274 1649.16 1127.22 70/27
275 1655.18 1131.33
276 1661.2 1135.44 47/18
277 1667.22 1139.56 55/21
278 1673.24 1143.67
279 1679.26 1147.78
280 1685.28 1151.9 45/17
281 1691.3 1156.01 93/35
282 1697.31 1160.13
283 1703.33 1164.24 99/37
284 1709.35 1168.35 51/19
285 1715.37 1172.47
286 1721.39 1176.58
287 1727.41 1180.7
288 1733.43 1184.81
289 1739.45 1188.92
290 1745.47 1193.04 74/27
291 1751.48 1197.15
292 1757.5 1201.27 69/25
293 1763.52 1205.38
294 1769.54 1209.49
295 1775.56 1213.61
296 1781.58 1217.72
297 1787.6 1221.84
298 1793.62 1225.95 31/11
299 1799.63 1230.06 99/35
300 1805.65 1234.18
301 1811.67 1238.29
302 1817.69 1242.41
303 1823.71 1246.52 43/15
304 1829.73 1250.63
305 1835.75 1254.75
306 1841.77 1258.86
307 1847.79 1262.97
308 1853.8 1267.09
309 1859.82 1271.2 41/14
310 1865.84 1275.32
311 1871.86 1279.43
312 1877.88 1283.54
313 1883.9 1287.66 98/33
314 1889.92 1291.77
315 1895.94 1295.89
316 1901.96 1300 3/1

Harmonics

Approximation of prime harmonics in 316edt
Harmonic 2 3 5 7 11 13 17 19 23
Error Absolute (¢) -2.25 +0.00 +0.41 +1.73 +1.69 +1.38 +0.40 +0.45 +0.72
Relative (%) -37.4 +0.0 +6.8 +28.7 +28.0 +22.9 +6.7 +7.5 +12.0
Steps
(reduced)
199
(199)
316
(0)
463
(147)
560
(244)
690
(58)
738
(106)
815
(183)
847
(215)
902
(270)
Approximation of odd harmonics in 316edt
Harmonic 25 27 29 31 33 35 37 39 41 43 45 47 49 51 53 55
Error Absolute (¢) +0.82 +0.00 +2.68 +1.58 +1.69 +2.14 +2.24 +1.38 -0.94 +0.87 +0.41 -2.65 -2.56 +0.40 +0.02 +2.10
Relative (%) +13.7 +0.0 +44.6 +26.3 +28.0 +35.5 +37.1 +22.9 -15.6 +14.5 +6.8 -43.9 -42.6 +6.7 +0.3 +34.8
Steps
(reduced)
926
(294)
948
(0)
969
(21)
988
(40)
1006
(58)
1023
(75)
1039
(91)
1054
(106)
1068
(120)
1082
(134)
1095
(147)
1107
(159)
1119
(171)
1131
(183)
1142
(194)
1153
(205)