316edt
Jump to navigation
Jump to search
Prime factorization
22 × 79
Step size
6.01884¢
Octave
199\316edt (1197.75¢)
Consistency limit
2
Distinct consistency limit
2
This page is a stub. You can help the Xenharmonic Wiki by expanding it. |
← 315edt | 316edt | 317edt → |
316 equal divisions of the tritave, perfect twelfth, or 3rd harmonic (abbreviated 316edt or 316ed3), is a nonoctave tuning system that divides the interval of 3/1 into 316 equal parts of about 6.02 ¢ each. Each step represents a frequency ratio of 31/316, or the 316th root of 3.
Intervals
Steps | Cents | Approximate Ratios |
---|---|---|
0 | 0 | 1/1 |
1 | 6.019 | |
2 | 12.038 | |
3 | 18.057 | 99/98 |
4 | 24.075 | |
5 | 30.094 | 58/57 |
6 | 36.113 | |
7 | 42.132 | 42/41 |
8 | 48.151 | |
9 | 54.17 | 65/63, 98/95 |
10 | 60.188 | |
11 | 66.207 | |
12 | 72.226 | |
13 | 78.245 | 45/43, 91/87 |
14 | 84.264 | |
15 | 90.283 | 98/93 |
16 | 96.302 | 37/35 |
17 | 102.32 | 35/33 |
18 | 108.339 | 33/31 |
19 | 114.358 | 47/44 |
20 | 120.377 | |
21 | 126.396 | |
22 | 132.415 | |
23 | 138.433 | |
24 | 144.452 | 25/23 |
25 | 150.471 | |
26 | 156.49 | 81/74 |
27 | 162.509 | |
28 | 168.528 | 43/39 |
29 | 174.547 | 52/47 |
30 | 180.565 | |
31 | 186.584 | |
32 | 192.603 | 19/17 |
33 | 198.622 | 37/33, 46/41 |
34 | 204.641 | |
35 | 210.66 | 35/31 |
36 | 216.678 | 17/15 |
37 | 222.697 | 58/51 |
38 | 228.716 | |
39 | 234.735 | 63/55 |
40 | 240.754 | 54/47 |
41 | 246.773 | 98/85 |
42 | 252.791 | 81/70 |
43 | 258.81 | |
44 | 264.829 | |
45 | 270.848 | |
46 | 276.867 | |
47 | 282.886 | |
48 | 288.905 | 13/11 |
49 | 294.923 | 51/43 |
50 | 300.942 | 69/58 |
51 | 306.961 | |
52 | 312.98 | |
53 | 318.999 | |
54 | 325.018 | 35/29 |
55 | 331.036 | 23/19 |
56 | 337.055 | |
57 | 343.074 | 50/41 |
58 | 349.093 | |
59 | 355.112 | 27/22, 70/57 |
60 | 361.131 | 85/69 |
61 | 367.15 | |
62 | 373.168 | |
63 | 379.187 | |
64 | 385.206 | |
65 | 391.225 | |
66 | 397.244 | 39/31 |
67 | 403.263 | |
68 | 409.281 | 19/15 |
69 | 415.3 | |
70 | 421.319 | 37/29 |
71 | 427.338 | |
72 | 433.357 | |
73 | 439.376 | 58/45 |
74 | 445.395 | 75/58 |
75 | 451.413 | 74/57 |
76 | 457.432 | |
77 | 463.451 | 98/75 |
78 | 469.47 | |
79 | 475.489 | 25/19 |
80 | 481.508 | |
81 | 487.526 | 57/43 |
82 | 493.545 | |
83 | 499.564 | |
84 | 505.583 | |
85 | 511.602 | |
86 | 517.621 | 58/43 |
87 | 523.64 | 23/17 |
88 | 529.658 | |
89 | 535.677 | |
90 | 541.696 | |
91 | 547.715 | 70/51 |
92 | 553.734 | 95/69 |
93 | 559.753 | |
94 | 565.771 | |
95 | 571.79 | |
96 | 577.809 | 81/58 |
97 | 583.828 | |
98 | 589.847 | |
99 | 595.866 | |
100 | 601.884 | |
101 | 607.903 | 27/19, 98/69 |
102 | 613.922 | |
103 | 619.941 | 93/65 |
104 | 625.96 | |
105 | 631.979 | |
106 | 637.998 | |
107 | 644.016 | 74/51 |
108 | 650.035 | |
109 | 656.054 | |
110 | 662.073 | 85/58 |
111 | 668.092 | 25/17 |
112 | 674.111 | 31/21 |
113 | 680.129 | |
114 | 686.148 | 55/37 |
115 | 692.167 | 85/57 |
116 | 698.186 | |
117 | 704.205 | |
118 | 710.224 | 98/65 |
119 | 716.243 | 62/41 |
120 | 722.261 | |
121 | 728.28 | 99/65 |
122 | 734.299 | |
123 | 740.318 | 23/15 |
124 | 746.337 | |
125 | 752.356 | |
126 | 758.374 | |
127 | 764.393 | 14/9 |
128 | 770.412 | 39/25 |
129 | 776.431 | |
130 | 782.45 | 11/7 |
131 | 788.469 | 41/26 |
132 | 794.488 | 87/55 |
133 | 800.506 | 27/17 |
134 | 806.525 | |
135 | 812.544 | |
136 | 818.563 | 69/43 |
137 | 824.582 | 66/41 |
138 | 830.601 | 21/13 |
139 | 836.619 | |
140 | 842.638 | |
141 | 848.657 | |
142 | 854.676 | 95/58 |
143 | 860.695 | 74/45 |
144 | 866.714 | |
145 | 872.733 | |
146 | 878.751 | |
147 | 884.77 | 5/3 |
148 | 890.789 | |
149 | 896.808 | 47/28 |
150 | 902.827 | |
151 | 908.846 | 93/55 |
152 | 914.864 | |
153 | 920.883 | 63/37 |
154 | 926.902 | |
155 | 932.921 | |
156 | 938.94 | 43/25 |
157 | 944.959 | |
158 | 950.978 | |
159 | 956.996 | |
160 | 963.015 | 75/43, 82/47 |
161 | 969.034 | |
162 | 975.053 | 65/37 |
163 | 981.072 | 37/21 |
164 | 987.091 | |
165 | 993.109 | 55/31 |
166 | 999.128 | |
167 | 1005.147 | 84/47 |
168 | 1011.166 | |
169 | 1017.185 | 9/5 |
170 | 1023.204 | |
171 | 1029.222 | |
172 | 1035.241 | |
173 | 1041.26 | |
174 | 1047.279 | |
175 | 1053.298 | |
176 | 1059.317 | |
177 | 1065.336 | |
178 | 1071.354 | 13/7 |
179 | 1077.373 | 41/22, 95/51 |
180 | 1083.392 | 43/23 |
181 | 1089.411 | |
182 | 1095.43 | |
183 | 1101.449 | 17/9 |
184 | 1107.467 | 55/29 |
185 | 1113.486 | 78/41 |
186 | 1119.505 | 21/11 |
187 | 1125.524 | |
188 | 1131.543 | 25/13 |
189 | 1137.562 | 27/14 |
190 | 1143.581 | |
191 | 1149.599 | |
192 | 1155.618 | |
193 | 1161.637 | 45/23 |
194 | 1167.656 | |
195 | 1173.675 | 65/33 |
196 | 1179.694 | 85/43 |
197 | 1185.712 | |
198 | 1191.731 | |
199 | 1197.75 | |
200 | 1203.769 | |
201 | 1209.788 | |
202 | 1215.807 | |
203 | 1221.826 | |
204 | 1227.844 | 63/31 |
205 | 1233.863 | 51/25 |
206 | 1239.882 | |
207 | 1245.901 | |
208 | 1251.92 | |
209 | 1257.939 | |
210 | 1263.957 | |
211 | 1269.976 | |
212 | 1275.995 | |
213 | 1282.014 | 65/31, 86/41 |
214 | 1288.033 | |
215 | 1294.052 | 19/9 |
216 | 1300.071 | |
217 | 1306.089 | |
218 | 1312.108 | |
219 | 1318.127 | |
220 | 1324.146 | 58/27 |
221 | 1330.165 | |
222 | 1336.184 | |
223 | 1342.202 | |
224 | 1348.221 | 85/39 |
225 | 1354.24 | |
226 | 1360.259 | |
227 | 1366.278 | |
228 | 1372.297 | 95/43 |
229 | 1378.315 | 51/23 |
230 | 1384.334 | |
231 | 1390.353 | |
232 | 1396.372 | |
233 | 1402.391 | |
234 | 1408.41 | |
235 | 1414.429 | 43/19 |
236 | 1420.447 | |
237 | 1426.466 | 57/25, 98/43 |
238 | 1432.485 | |
239 | 1438.504 | |
240 | 1444.523 | |
241 | 1450.542 | |
242 | 1456.56 | 58/25 |
243 | 1462.579 | |
244 | 1468.598 | |
245 | 1474.617 | |
246 | 1480.636 | 87/37 |
247 | 1486.655 | |
248 | 1492.674 | 45/19 |
249 | 1498.692 | |
250 | 1504.711 | 31/13 |
251 | 1510.73 | |
252 | 1516.749 | |
253 | 1522.768 | |
254 | 1528.787 | |
255 | 1534.805 | |
256 | 1540.824 | 95/39 |
257 | 1546.843 | 22/9 |
258 | 1552.862 | |
259 | 1558.881 | |
260 | 1564.9 | |
261 | 1570.919 | 57/23 |
262 | 1576.937 | 87/35 |
263 | 1582.956 | |
264 | 1588.975 | |
265 | 1594.994 | 98/39 |
266 | 1601.013 | 58/23 |
267 | 1607.032 | 43/17 |
268 | 1613.05 | 33/13 |
269 | 1619.069 | |
270 | 1625.088 | |
271 | 1631.107 | |
272 | 1637.126 | |
273 | 1643.145 | |
274 | 1649.164 | 70/27 |
275 | 1655.182 | |
276 | 1661.201 | 47/18 |
277 | 1667.22 | 55/21 |
278 | 1673.239 | |
279 | 1679.258 | |
280 | 1685.277 | 45/17 |
281 | 1691.295 | 93/35 |
282 | 1697.314 | |
283 | 1703.333 | 99/37 |
284 | 1709.352 | 51/19 |
285 | 1715.371 | |
286 | 1721.39 | |
287 | 1727.408 | |
288 | 1733.427 | |
289 | 1739.446 | |
290 | 1745.465 | 74/27 |
291 | 1751.484 | |
292 | 1757.503 | 69/25 |
293 | 1763.522 | |
294 | 1769.54 | |
295 | 1775.559 | |
296 | 1781.578 | |
297 | 1787.597 | |
298 | 1793.616 | 31/11 |
299 | 1799.635 | 99/35 |
300 | 1805.653 | |
301 | 1811.672 | |
302 | 1817.691 | |
303 | 1823.71 | 43/15 |
304 | 1829.729 | |
305 | 1835.748 | |
306 | 1841.767 | |
307 | 1847.785 | |
308 | 1853.804 | |
309 | 1859.823 | 41/14 |
310 | 1865.842 | |
311 | 1871.861 | |
312 | 1877.88 | |
313 | 1883.898 | 98/33 |
314 | 1889.917 | |
315 | 1895.936 | |
316 | 1901.955 | 3/1 |
Harmonics
Harmonic | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | |
---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | -2.25 | +0.00 | +0.41 | +1.73 | +1.69 | +1.38 | +0.40 | +0.45 | +0.72 |
Relative (%) | -37.4 | +0.0 | +6.8 | +28.7 | +28.0 | +22.9 | +6.7 | +7.5 | +12.0 | |
Steps (reduced) |
199 (199) |
316 (0) |
463 (147) |
560 (244) |
690 (58) |
738 (106) |
815 (183) |
847 (215) |
902 (270) |
Harmonic | 25 | 27 | 29 | 31 | 33 | 35 | 37 | 39 | 41 | 43 | 45 | 47 | 49 | 51 | 53 | 55 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | +0.82 | +0.00 | +2.68 | +1.58 | +1.69 | +2.14 | +2.24 | +1.38 | -0.94 | +0.87 | +0.41 | -2.65 | -2.56 | +0.40 | +0.02 | +2.10 |
Relative (%) | +13.7 | +0.0 | +44.6 | +26.3 | +28.0 | +35.5 | +37.1 | +22.9 | -15.6 | +14.5 | +6.8 | -43.9 | -42.6 | +6.7 | +0.3 | +34.8 | |
Steps (reduced) |
926 (294) |
948 (0) |
969 (21) |
988 (40) |
1006 (58) |
1023 (75) |
1039 (91) |
1054 (106) |
1068 (120) |
1082 (134) |
1095 (147) |
1107 (159) |
1119 (171) |
1131 (183) |
1142 (194) |
1153 (205) |