78edt

From Xenharmonic Wiki
Jump to navigation Jump to search
← 77edt78edt79edt →
Prime factorization 2 × 3 × 13
Step size 24.384¢ 
Octave 49\78edt (1194.82¢)
Consistency limit 7
Distinct consistency limit 7

78EDT is the equal division of the third harmonic into 78 parts of 24.3840 cents each, corresponding to 49.2125 edo. It has a distinct flat tendency, in the sense that if 3 is pure, 2 (octave), 5, 7, 11, 13, 17, and 19 are all flat. It is consistent to the no-twos 19-limit, tempering out 245/243 and 3125/3087 in the 7-limit; 1331/1323, 6655/6561, and 9375/9317 in the 11-limit; 275/273, 847/845, 1575/1573, and 2197/2187 in the 13-limit; 875/867 and 2025/2023 in the 17-limit; 325/323, 363/361, 665/663, 935/931, and 1547/1539 in the 19-limit (no-twos subgroup).

78EDT is related to 49 edo, but with octave compression of 5.1821 cents. Patent vals match through the 11-limit, tempering out 64/63, 100/99, 245/243, and 1331/1323. 78EDT tempers out 144/143, 196/195, 275/273, 325/324, 364/363, and 572/567 in the 13-limit; 120/119, 136/135, 154/153, 170/169, and 224/221 in the 17-limit; 96/95, 190/189, and 210/209 in the 19-limit (full integer limit).

Intervals

Steps Cents Approximate Ratios
0 0 1/1
1 24.384
2 48.768 34/33, 35/34, 36/35, 37/36, 38/37
3 73.152 25/24
4 97.536 18/17, 37/35
5 121.92 15/14, 29/27
6 146.304 37/34
7 170.688 21/19
8 195.072 19/17, 28/25, 37/33
9 219.456 17/15, 25/22
10 243.84 38/33
11 268.224 7/6
12 292.608
13 316.993 6/5
14 341.377
15 365.761 21/17, 37/30
16 390.145
17 414.529 14/11, 33/26
18 438.913
19 463.297 17/13
20 487.681
21 512.065 35/26, 39/29
22 536.449 15/11
23 560.833 18/13, 29/21
24 585.217 7/5
25 609.601 27/19, 37/26
26 633.985 13/9, 36/25
27 658.369 19/13
28 682.753
29 707.137
30 731.521 29/19
31 755.905 17/11
32 780.289 11/7
33 804.673 35/22
34 829.057 21/13
35 853.441 18/11
36 877.825
37 902.209 37/22
38 926.593 29/17
39 950.978 26/15
40 975.362
41 999.746
42 1024.13 38/21
43 1048.514 11/6
44 1072.898 13/7
45 1097.282
46 1121.666 21/11
47 1146.05 33/17
48 1170.434
49 1194.818
50 1219.202
51 1243.586 39/19
52 1267.97 25/12, 27/13
53 1292.354 19/9
54 1316.738 15/7
55 1341.122 13/6
56 1365.506 11/5
57 1389.89 29/13, 38/17
58 1414.274 34/15
59 1438.658 39/17
60 1463.042
61 1487.426 26/11, 33/14
62 1511.81
63 1536.194 17/7
64 1560.578 37/15
65 1584.963 5/2
66 1609.347 38/15
67 1633.731 18/7
68 1658.115
69 1682.499 37/14
70 1706.883
71 1731.267 19/7
72 1755.651
73 1780.035 14/5
74 1804.419 17/6
75 1828.803
76 1853.187 35/12
77 1877.571
78 1901.955 3/1

Harmonics

Approximation of prime harmonics in 78edt
Harmonic 2 3 5 7 11 13 17 19 23 29 31
Error Absolute (¢) -5.2 +0.0 -6.5 -3.8 -6.0 -2.6 -3.8 -1.2 +9.4 -1.8 +4.7
Relative (%) -21.3 +0.0 -26.8 -15.7 -24.7 -10.8 -15.4 -5.1 +38.4 -7.3 +19.2
Steps
(reduced)
49
(49)
78
(0)
114
(36)
138
(60)
170
(14)
182
(26)
201
(45)
209
(53)
223
(67)
239
(5)
244
(10)
Approximation of prime harmonics in 78edt
Harmonic 37 41 43 47 53 59 61 67 71 73 79
Error Absolute (¢) -9.0 +8.3 -1.0 -8.7 +2.8 -12.2 +3.3 +11.5 +8.7 +9.3 -5.5
Relative (%) -37.0 +34.1 -4.0 -35.5 +11.5 -50.0 +13.3 +47.2 +35.5 +38.3 -22.5
Steps
(reduced)
256
(22)
264
(30)
267
(33)
273
(39)
282
(48)
289
(55)
292
(58)
299
(65)
303
(69)
305
(71)
310
(76)