78edt

From Xenharmonic Wiki
Jump to navigation Jump to search
← 77edt 78edt 79edt →
Prime factorization 2 × 3 × 13
Step size 24.384¢ 
Octave 49\78edt (1194.82¢)
Consistency limit 7
Distinct consistency limit 7

78EDT is the equal division of the third harmonic into 78 parts of 24.3840 cents each, corresponding to 49.2125 edo. It has a distinct flat tendency, in the sense that if 3 is pure, 2 (octave), 5, 7, 11, 13, 17, and 19 are all flat. It is consistent to the no-twos 19-limit, tempering out 245/243 and 3125/3087 in the 7-limit; 1331/1323, 6655/6561, and 9375/9317 in the 11-limit; 275/273, 847/845, 1575/1573, and 2197/2187 in the 13-limit; 875/867 and 2025/2023 in the 17-limit; 325/323, 363/361, 665/663, 935/931, and 1547/1539 in the 19-limit (no-twos subgroup).

78EDT is related to 49 edo, but with octave compression of 5.1821 cents. Patent vals match through the 11-limit, tempering out 64/63, 100/99, 245/243, and 1331/1323. 78EDT tempers out 144/143, 196/195, 275/273, 325/324, 364/363, and 572/567 in the 13-limit; 120/119, 136/135, 154/153, 170/169, and 224/221 in the 17-limit; 96/95, 190/189, and 210/209 in the 19-limit (full integer limit).

Intervals

Steps Cents Hekts Approximate ratios
0 0 0 1/1
1 24.4 16.7
2 48.8 33.3 34/33, 35/34, 36/35, 37/36, 38/37
3 73.2 50 25/24
4 97.5 66.7 18/17, 37/35
5 121.9 83.3 15/14, 29/27
6 146.3 100 37/34
7 170.7 116.7 21/19
8 195.1 133.3 19/17, 28/25, 37/33
9 219.5 150 17/15, 25/22
10 243.8 166.7 38/33
11 268.2 183.3 7/6
12 292.6 200
13 317 216.7 6/5
14 341.4 233.3
15 365.8 250 21/17, 37/30
16 390.1 266.7
17 414.5 283.3 14/11, 33/26
18 438.9 300
19 463.3 316.7 17/13
20 487.7 333.3
21 512.1 350 35/26, 39/29
22 536.4 366.7 15/11
23 560.8 383.3 18/13, 29/21
24 585.2 400 7/5
25 609.6 416.7 27/19, 37/26
26 634 433.3 13/9, 36/25
27 658.4 450 19/13
28 682.8 466.7
29 707.1 483.3
30 731.5 500 29/19
31 755.9 516.7 17/11
32 780.3 533.3 11/7
33 804.7 550 35/22
34 829.1 566.7 21/13
35 853.4 583.3 18/11
36 877.8 600
37 902.2 616.7 37/22
38 926.6 633.3 29/17
39 951 650 26/15
40 975.4 666.7
41 999.7 683.3
42 1024.1 700 38/21
43 1048.5 716.7 11/6
44 1072.9 733.3 13/7
45 1097.3 750
46 1121.7 766.7 21/11
47 1146 783.3 33/17
48 1170.4 800
49 1194.8 816.7
50 1219.2 833.3
51 1243.6 850 39/19
52 1268 866.7 25/12, 27/13
53 1292.4 883.3 19/9
54 1316.7 900 15/7
55 1341.1 916.7 13/6
56 1365.5 933.3 11/5
57 1389.9 950 29/13, 38/17
58 1414.3 966.7 34/15
59 1438.7 983.3 39/17
60 1463 1000
61 1487.4 1016.7 26/11, 33/14
62 1511.8 1033.3
63 1536.2 1050 17/7
64 1560.6 1066.7 37/15
65 1585 1083.3 5/2
66 1609.3 1100 38/15
67 1633.7 1116.7 18/7
68 1658.1 1133.3
69 1682.5 1150 37/14
70 1706.9 1166.7
71 1731.3 1183.3 19/7
72 1755.7 1200
73 1780 1216.7 14/5
74 1804.4 1233.3 17/6
75 1828.8 1250
76 1853.2 1266.7 35/12
77 1877.6 1283.3
78 1902 1300 3/1

Harmonics

Approximation of prime harmonics in 78edt
Harmonic 2 3 5 7 11 13 17 19 23 29 31
Error Absolute (¢) -5.2 +0.0 -6.5 -3.8 -6.0 -2.6 -3.8 -1.2 +9.4 -1.8 +4.7
Relative (%) -21.3 +0.0 -26.8 -15.7 -24.7 -10.8 -15.4 -5.1 +38.4 -7.3 +19.2
Steps
(reduced)
49
(49)
78
(0)
114
(36)
138
(60)
170
(14)
182
(26)
201
(45)
209
(53)
223
(67)
239
(5)
244
(10)
Approximation of prime harmonics in 78edt
Harmonic 37 41 43 47 53 59 61 67 71 73 79
Error Absolute (¢) -9.0 +8.3 -1.0 -8.7 +2.8 -12.2 +3.3 +11.5 +8.7 +9.3 -5.5
Relative (%) -37.0 +34.1 -4.0 -35.5 +11.5 -50.0 +13.3 +47.2 +35.5 +38.3 -22.5
Steps
(reduced)
256
(22)
264
(30)
267
(33)
273
(39)
282
(48)
289
(55)
292
(58)
299
(65)
303
(69)
305
(71)
310
(76)