77edt
Jump to navigation
Jump to search
Prime factorization
7 × 11
Step size
24.7007¢
Octave
49\77edt (1210.34¢) (→7\11edt)
Consistency limit
2
Distinct consistency limit
2
This page is a stub. You can help the Xenharmonic Wiki by expanding it. |
← 76edt | 77edt | 78edt → |
77 equal divisions of the tritave, perfect twelfth, or 3rd harmonic (abbreviated 77edt or 77ed3), is a nonoctave tuning system that divides the interval of 3/1 into 77 equal parts of about 24.7 ¢ each. Each step represents a frequency ratio of 31/77, or the 77th root of 3.
Intervals
Steps | Cents | Approximate Ratios |
---|---|---|
0 | 0 | 1/1 |
1 | 24.701 | |
2 | 49.401 | 38/37 |
3 | 74.102 | 23/22 |
4 | 98.803 | 18/17, 35/33, 37/35 |
5 | 123.504 | 29/27 |
6 | 148.204 | |
7 | 172.905 | 21/19, 31/28 |
8 | 197.606 | 28/25, 37/33 |
9 | 222.306 | 25/22, 33/29 |
10 | 247.007 | 15/13, 38/33 |
11 | 271.708 | |
12 | 296.409 | |
13 | 321.109 | |
14 | 345.81 | 11/9 |
15 | 370.511 | 31/25 |
16 | 395.211 | 39/31 |
17 | 419.912 | 14/11, 37/29 |
18 | 444.613 | 22/17 |
19 | 469.314 | 38/29 |
20 | 494.014 | |
21 | 518.715 | 31/23 |
22 | 543.416 | 37/27 |
23 | 568.116 | 25/18 |
24 | 592.817 | 31/22, 38/27 |
25 | 617.518 | |
26 | 642.219 | |
27 | 666.919 | 25/17 |
28 | 691.62 | |
29 | 716.321 | |
30 | 741.021 | 23/15 |
31 | 765.722 | 14/9 |
32 | 790.423 | |
33 | 815.124 | |
34 | 839.824 | |
35 | 864.525 | 28/17 |
36 | 889.226 | |
37 | 913.926 | 22/13, 39/23 |
38 | 938.627 | 31/18 |
39 | 963.328 | |
40 | 988.029 | 23/13, 39/22 |
41 | 1012.729 | |
42 | 1037.43 | 31/17 |
43 | 1062.131 | |
44 | 1086.831 | |
45 | 1111.532 | |
46 | 1136.233 | 27/14 |
47 | 1160.934 | |
48 | 1185.634 | |
49 | 1210.335 | |
50 | 1235.036 | |
51 | 1259.736 | 29/14, 31/15 |
52 | 1284.437 | |
53 | 1309.138 | |
54 | 1333.839 | |
55 | 1358.539 | |
56 | 1383.24 | |
57 | 1407.941 | |
58 | 1432.641 | |
59 | 1457.342 | |
60 | 1482.043 | 33/14 |
61 | 1506.744 | 31/13 |
62 | 1531.444 | |
63 | 1556.145 | 27/11 |
64 | 1580.846 | |
65 | 1605.546 | |
66 | 1630.247 | |
67 | 1654.948 | 13/5 |
68 | 1679.649 | 29/11, 37/14 |
69 | 1704.349 | |
70 | 1729.05 | 19/7 |
71 | 1753.751 | |
72 | 1778.451 | |
73 | 1803.152 | 17/6 |
74 | 1827.853 | |
75 | 1852.554 | |
76 | 1877.254 | |
77 | 1901.955 | 3/1 |
Harmonics
Harmonic | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | +10.3 | +0.0 | -4.0 | +4.9 | +10.3 | -9.5 | +6.3 | +0.0 | -9.5 | -1.6 | -4.0 |
Relative (%) | +41.8 | +0.0 | -16.3 | +19.7 | +41.8 | -38.6 | +25.5 | +0.0 | -38.5 | -6.5 | -16.3 | |
Steps (reduced) |
49 (49) |
77 (0) |
97 (20) |
113 (36) |
126 (49) |
136 (59) |
146 (69) |
154 (0) |
161 (7) |
168 (14) |
174 (20) |
Harmonic | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | +5.6 | +0.8 | +4.9 | -8.1 | +10.5 | +10.3 | -9.2 | +0.8 | -9.5 | +8.7 | +5.9 |
Relative (%) | +22.7 | +3.3 | +19.7 | -32.6 | +42.5 | +41.8 | -37.1 | +3.4 | -38.6 | +35.4 | +23.8 | |
Steps (reduced) |
180 (26) |
185 (31) |
190 (36) |
194 (40) |
199 (45) |
203 (49) |
206 (52) |
210 (56) |
213 (59) |
217 (63) |
220 (66) |