77edt
Jump to navigation
Jump to search
Prime factorization
7 × 11
Step size
24.7007¢
Octave
49\77edt (1210.34¢) (→7\11edt)
Consistency limit
2
Distinct consistency limit
2
![]() |
This page is a stub. You can help the Xenharmonic Wiki by expanding it. |
← 76edt | 77edt | 78edt → |
77 equal divisions of the tritave, perfect twelfth, or 3rd harmonic (abbreviated 77edt or 77ed3), is a nonoctave tuning system that divides the interval of 3/1 into 77 equal parts of about 24.7 ¢ each. Each step represents a frequency ratio of 31/77, or the 77th root of 3.
Intervals
Steps | Cents | Hekts | Approximate ratios |
---|---|---|---|
0 | 0 | 0 | 1/1 |
1 | 24.7 | 16.9 | |
2 | 49.4 | 33.8 | 38/37 |
3 | 74.1 | 50.6 | 23/22 |
4 | 98.8 | 67.5 | 18/17, 35/33, 37/35 |
5 | 123.5 | 84.4 | 29/27 |
6 | 148.2 | 101.3 | |
7 | 172.9 | 118.2 | 21/19, 31/28 |
8 | 197.6 | 135.1 | 28/25, 37/33 |
9 | 222.3 | 151.9 | 25/22, 33/29 |
10 | 247 | 168.8 | 15/13, 38/33 |
11 | 271.7 | 185.7 | |
12 | 296.4 | 202.6 | |
13 | 321.1 | 219.5 | |
14 | 345.8 | 236.4 | 11/9 |
15 | 370.5 | 253.2 | 31/25 |
16 | 395.2 | 270.1 | 39/31 |
17 | 419.9 | 287 | 14/11, 37/29 |
18 | 444.6 | 303.9 | 22/17 |
19 | 469.3 | 320.8 | 38/29 |
20 | 494 | 337.7 | |
21 | 518.7 | 354.5 | 31/23 |
22 | 543.4 | 371.4 | 37/27 |
23 | 568.1 | 388.3 | 25/18 |
24 | 592.8 | 405.2 | 31/22, 38/27 |
25 | 617.5 | 422.1 | |
26 | 642.2 | 439 | |
27 | 666.9 | 455.8 | 25/17 |
28 | 691.6 | 472.7 | |
29 | 716.3 | 489.6 | |
30 | 741 | 506.5 | 23/15 |
31 | 765.7 | 523.4 | 14/9 |
32 | 790.4 | 540.3 | |
33 | 815.1 | 557.1 | |
34 | 839.8 | 574 | |
35 | 864.5 | 590.9 | 28/17 |
36 | 889.2 | 607.8 | |
37 | 913.9 | 624.7 | 22/13, 39/23 |
38 | 938.6 | 641.6 | 31/18 |
39 | 963.3 | 658.4 | |
40 | 988 | 675.3 | 23/13, 39/22 |
41 | 1012.7 | 692.2 | |
42 | 1037.4 | 709.1 | 31/17 |
43 | 1062.1 | 726 | |
44 | 1086.8 | 742.9 | |
45 | 1111.5 | 759.7 | |
46 | 1136.2 | 776.6 | 27/14 |
47 | 1160.9 | 793.5 | |
48 | 1185.6 | 810.4 | |
49 | 1210.3 | 827.3 | |
50 | 1235 | 844.2 | |
51 | 1259.7 | 861 | 29/14, 31/15 |
52 | 1284.4 | 877.9 | |
53 | 1309.1 | 894.8 | |
54 | 1333.8 | 911.7 | |
55 | 1358.5 | 928.6 | |
56 | 1383.2 | 945.5 | |
57 | 1407.9 | 962.3 | |
58 | 1432.6 | 979.2 | |
59 | 1457.3 | 996.1 | |
60 | 1482 | 1013 | 33/14 |
61 | 1506.7 | 1029.9 | 31/13 |
62 | 1531.4 | 1046.8 | |
63 | 1556.1 | 1063.6 | 27/11 |
64 | 1580.8 | 1080.5 | |
65 | 1605.5 | 1097.4 | |
66 | 1630.2 | 1114.3 | |
67 | 1654.9 | 1131.2 | 13/5 |
68 | 1679.6 | 1148.1 | 29/11, 37/14 |
69 | 1704.3 | 1164.9 | |
70 | 1729.1 | 1181.8 | 19/7 |
71 | 1753.8 | 1198.7 | |
72 | 1778.5 | 1215.6 | |
73 | 1803.2 | 1232.5 | 17/6 |
74 | 1827.9 | 1249.4 | |
75 | 1852.6 | 1266.2 | |
76 | 1877.3 | 1283.1 | |
77 | 1902 | 1300 | 3/1 |
Harmonics
Harmonic | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | +10.3 | +0.0 | -4.0 | +4.9 | +10.3 | -9.5 | +6.3 | +0.0 | -9.5 | -1.6 | -4.0 |
Relative (%) | +41.8 | +0.0 | -16.3 | +19.7 | +41.8 | -38.6 | +25.5 | +0.0 | -38.5 | -6.5 | -16.3 | |
Steps (reduced) |
49 (49) |
77 (0) |
97 (20) |
113 (36) |
126 (49) |
136 (59) |
146 (69) |
154 (0) |
161 (7) |
168 (14) |
174 (20) |
Harmonic | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | +5.6 | +0.8 | +4.9 | -8.1 | +10.5 | +10.3 | -9.2 | +0.8 | -9.5 | +8.7 | +5.9 |
Relative (%) | +22.7 | +3.3 | +19.7 | -32.6 | +42.5 | +41.8 | -37.1 | +3.4 | -38.6 | +35.4 | +23.8 | |
Steps (reduced) |
180 (26) |
185 (31) |
190 (36) |
194 (40) |
199 (45) |
203 (49) |
206 (52) |
210 (56) |
213 (59) |
217 (63) |
220 (66) |