76edt
Jump to navigation
Jump to search
Prime factorization
22 × 19
Step size
25.0257¢
Octave
48\76edt (1201.23¢) (→12\19edt)
Consistency limit
5
Distinct consistency limit
5
← 75edt | 76edt | 77edt → |
Division of the third harmonic into 76 equal parts (76EDT) is related to 48 edo (eighth-tone tuning), but with the 3/1 rather than the 2/1 being just. The octave is about 1.2347 cents stretched and the step size is about 25.0257 cents.
Lookalikes: 48edo, 124ed6, 28edf
Intervals
Steps | Cents | Hekts | Approximate ratios |
---|---|---|---|
0 | 0 | 0 | 1/1 |
1 | 25 | 17.1 | |
2 | 50.1 | 34.2 | 33/32, 34/33, 35/34, 36/35, 37/36 |
3 | 75.1 | 51.3 | 23/22, 24/23 |
4 | 100.1 | 68.4 | 18/17, 35/33 |
5 | 125.1 | 85.5 | 29/27 |
6 | 150.2 | 102.6 | 12/11 |
7 | 175.2 | 119.7 | 21/19, 31/28 |
8 | 200.2 | 136.8 | 37/33 |
9 | 225.2 | 153.9 | 33/29 |
10 | 250.3 | 171.1 | 15/13, 37/32 |
11 | 275.3 | 188.2 | 27/23, 34/29 |
12 | 300.3 | 205.3 | 19/16 |
13 | 325.3 | 222.4 | 29/24, 35/29 |
14 | 350.4 | 239.5 | 11/9, 38/31 |
15 | 375.4 | 256.6 | 36/29 |
16 | 400.4 | 273.7 | 29/23, 34/27 |
17 | 425.4 | 290.8 | 23/18 |
18 | 450.5 | 307.9 | 35/27 |
19 | 475.5 | 325 | 29/22 |
20 | 500.5 | 342.1 | 4/3 |
21 | 525.5 | 359.2 | 19/14, 23/17 |
22 | 550.6 | 376.3 | 11/8 |
23 | 575.6 | 393.4 | |
24 | 600.6 | 410.5 | 17/12 |
25 | 625.6 | 427.6 | 23/16, 33/23 |
26 | 650.7 | 444.7 | 16/11, 35/24 |
27 | 675.7 | 461.8 | 31/21, 34/23 |
28 | 700.7 | 478.9 | 3/2 |
29 | 725.7 | 496.1 | 35/23 |
30 | 750.8 | 513.2 | 17/11, 37/24 |
31 | 775.8 | 530.3 | 36/23 |
32 | 800.8 | 547.4 | 27/17, 35/22 |
33 | 825.8 | 564.5 | 29/18, 37/23 |
34 | 850.9 | 581.6 | 18/11, 31/19 |
35 | 875.9 | 598.7 | |
36 | 900.9 | 615.8 | 32/19, 37/22 |
37 | 926 | 632.9 | 29/17 |
38 | 951 | 650 | 26/15 |
39 | 976 | 667.1 | |
40 | 1001 | 684.2 | |
41 | 1026.1 | 701.3 | 38/21 |
42 | 1051.1 | 718.4 | 11/6 |
43 | 1076.1 | 735.5 | |
44 | 1101.1 | 752.6 | 17/9 |
45 | 1126.2 | 769.7 | 23/12 |
46 | 1151.2 | 786.8 | 33/17, 35/18, 37/19 |
47 | 1176.2 | 803.9 | |
48 | 1201.2 | 821.1 | 2/1 |
49 | 1226.3 | 838.2 | |
50 | 1251.3 | 855.3 | 33/16, 35/17 |
51 | 1276.3 | 872.4 | 23/11 |
52 | 1301.3 | 889.5 | 36/17 |
53 | 1326.4 | 906.6 | |
54 | 1351.4 | 923.7 | 24/11 |
55 | 1376.4 | 940.8 | 31/14 |
56 | 1401.4 | 957.9 | 9/4 |
57 | 1426.5 | 975 | |
58 | 1451.5 | 992.1 | 37/16 |
59 | 1476.5 | 1009.2 | |
60 | 1501.5 | 1026.3 | |
61 | 1526.6 | 1043.4 | 29/12 |
62 | 1551.6 | 1060.5 | 27/11 |
63 | 1576.6 | 1077.6 | |
64 | 1601.6 | 1094.7 | |
65 | 1626.7 | 1111.8 | 23/9 |
66 | 1651.7 | 1128.9 | 13/5 |
67 | 1676.7 | 1146.1 | 29/11 |
68 | 1701.7 | 1163.2 | |
69 | 1726.8 | 1180.3 | 19/7 |
70 | 1751.8 | 1197.4 | 11/4 |
71 | 1776.8 | 1214.5 | |
72 | 1801.9 | 1231.6 | 17/6 |
73 | 1826.9 | 1248.7 | 23/8 |
74 | 1851.9 | 1265.8 | 32/11, 35/12 |
75 | 1876.9 | 1282.9 | |
76 | 1902 | 1300 | 3/1 |
Harmonics
Harmonic | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | +1.2 | +0.0 | +2.5 | -8.5 | +1.2 | +9.6 | +3.7 | +0.0 | -7.2 | +3.0 | +2.5 |
Relative (%) | +4.9 | +0.0 | +9.9 | -33.8 | +4.9 | +38.5 | +14.8 | +0.0 | -28.9 | +11.8 | +9.9 | |
Steps (reduced) |
48 (48) |
76 (0) |
96 (20) |
111 (35) |
124 (48) |
135 (59) |
144 (68) |
152 (0) |
159 (7) |
166 (14) |
172 (20) |
Harmonic | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | -11.0 | +10.9 | -8.5 | +4.9 | +0.1 | +1.2 | +7.7 | -6.0 | +9.6 | +4.2 | +2.3 |
Relative (%) | -43.9 | +43.5 | -33.8 | +19.7 | +0.3 | +4.9 | +30.9 | -23.9 | +38.5 | +16.7 | +9.2 | |
Steps (reduced) |
177 (25) |
183 (31) |
187 (35) |
192 (40) |
196 (44) |
200 (48) |
204 (52) |
207 (55) |
211 (59) |
214 (62) |
217 (65) |