28edf

From Xenharmonic Wiki
Jump to navigation Jump to search
← 27edf28edf29edf →
Prime factorization 22 × 7
Step size 25.0698¢ 
Octave 48\28edf (1203.35¢) (→12\7edf)
Twelfth 76\28edf (1905.31¢) (→19\7edf)
Consistency limit 6
Distinct consistency limit 6

Division of the just perfect fifth into 28 equal parts (28EDF) is related to 48 edo, but with the 3/2 rather than the 2/1 being just. The octave is about 3.3514 cents stretched and the step size is about 25.0698 cents (corresponding to 47.8663 edo). It is related to the regular temperament which tempers out |187 -159 28> in the 5-limit; 6656/6655, 256000/255879, and 38671875/38614472 in the 13-limit (2.3.5.11.13 subgroup), which is supported by 335, 383, 718, 1053, and 1101 EDOs.

Intervals

Steps Cents Approximate Ratios
0 0 1/1
1 25.0698 45/44, 55/54, 56/55, 78/77, 81/80
2 50.1396 28/27, 33/32, 40/39, 50/49, 65/63, 77/75
3 75.2095 21/20, 26/25, 27/26, 80/77
4 100.279 55/52, 77/72, 81/77
5 125.349 13/12, 14/13, 15/14, 16/15
6 150.419 12/11
7 175.489 10/9, 11/10
8 200.559 9/8, 28/25, 39/35
9 225.628 44/39, 55/48, 63/55
10 250.698 7/6, 15/13, 52/45, 65/56
11 275.768 13/11, 64/55
12 300.838 25/21, 32/27, 33/28, 77/65
13 325.908 6/5, 39/32, 40/33, 63/52
14 350.978 11/9, 27/22
15 376.047 5/4, 16/13, 26/21, 56/45
16 401.117 14/11, 63/50, 81/64
17 426.187 33/26, 50/39, 77/60, 80/63
18 451.257 9/7, 13/10
19 476.327 55/42, 72/55
20 501.396 4/3, 35/26, 65/49, 75/56
21 526.466 15/11, 27/20
22 551.536 11/8
23 576.606 7/5, 18/13, 39/28, 45/32
24 601.676 55/39, 77/54, 78/55
25 626.746 10/7, 13/9, 56/39, 64/45, 75/52
26 651.815 16/11, 81/56
27 676.885 22/15, 40/27, 77/52, 81/55
28 701.955 3/2, 52/35