27edf

From Xenharmonic Wiki
Jump to navigation Jump to search
← 26edf 27edf 28edf →
Prime factorization 33
Step size 25.9983¢ 
Octave 46\27edf (1195.92¢)
Twelfth 73\27edf (1897.88¢)
Consistency limit 6
Distinct consistency limit 6

Division of the just perfect fifth into 27 equal parts (27EDF) is related to 46 edo, but with the 3/2 rather than the 2/1 being just. The octave is about 4.0767 cents compressed and the step size is about 25.9983 cents. Unlike 46edo, it is only consistent up to the 6-integer-limit, with discrepancy for the 7th harmonic.

It is related to the regular temperament which tempers out 4375/4374 and 2199023255552/2188322577315 in the 7-limit, which is supported by 46, 323, 369, 415, and 692 EDOs.

Lookalikes: 46edo, 73edt

Harmonics

Approximation of prime harmonics in 27edf
Harmonic 2 3 5 7 11 13 17 19
Error Absolute (¢) -4.1 -4.1 -4.5 +11.0 +8.4 +5.2 +8.7 -1.8
Relative (%) -15.7 -15.7 -17.3 +42.1 +32.4 +20.0 +33.6 -7.1
Steps
(reduced)
46
(19)
73
(19)
107
(26)
130
(22)
160
(25)
171
(9)
189
(0)
196
(7)
(contd.)
Harmonic 23 29 31 37 41 43 47 53
Error Absolute (¢) +5.4 -6.0 +8.6 -11.7 -7.5 -11.9 -9.9 -9.9
Relative (%) +20.7 -22.9 +33.0 -45.2 -28.7 -45.9 -38.2 -38.3
Steps
(reduced)
209
(20)
224
(8)
229
(13)
240
(24)
247
(4)
250
(7)
256
(13)
264
(21)

Intervals

Intervals of 27edf
degree cents value corresponding
JI intervals
comments
0 exact 1/1
1 25.9983
2 51.9967
3 77.9950
4 103.9933
5 129.9917 69/64
6 155.9900
7 181.9883 10/9
8 207.9867 pseudo-9/8
9 233.9850 pseudo-8/7
10 259.9833 pseudo-7/6
11 285.9817
12 311.9800 pseudo-6/5
13 337.9783 175/144
14 363.9767 216/175
15 389.9750 pseudo-5/4
16 415.9733
17 441.9717 pseudo-9/7
18 467.9700
19 493.9683 pseudo-4/3
20 519.9667 27/20
21 545.9650
22 571.9633 32/23
23 597.9617
24 623.9600
25 649.9583
26 675.9567
27 701.9550 exact 3/2 just perfect fifth