26edf

From Xenharmonic Wiki
Jump to navigation Jump to search
← 25edf 26edf 27edf →
Prime factorization 2 × 13
Step size 26.9983¢ 
Octave 44\26edf (1187.92¢) (→22\13edf)
Twelfth 70\26edf (1889.88¢) (→35\13edf)
Consistency limit 2
Distinct consistency limit 2

26EDF is the equal division of the just perfect fifth into 26 parts of 26.9983 cents each, corresponding to 44.4473 edo. It is nearly identical to every ninth step of 400edo.

Harmonics

Approximation of harmonics in 26edf
Harmonic 2 3 4 5 6 7 8 9
Error Absolute (¢) -12.1 -12.1 +2.8 -5.5 +2.8 +6.0 -9.2 +2.8
Relative (%) -44.7 -44.7 +10.5 -20.3 +10.5 +22.1 -34.2 +10.5
Steps
(reduced)
44
(18)
70
(18)
89
(11)
103
(25)
115
(11)
125
(21)
133
(3)
141
(11)
(contd.)
Harmonic 10 11 12 13 14 15 16 17
Error Absolute (¢) +9.4 +6.4 -9.2 -12.8 -6.1 +9.4 +5.7 +8.7
Relative (%) +34.9 +23.8 -34.2 -47.5 -22.7 +34.9 +21.1 +32.3
Steps
(reduced)
148
(18)
154
(24)
159
(3)
164
(8)
169
(13)
174
(18)
178
(22)
182
(0)

Intervals

Intervals of 26edf
degree cents value corresponding
JI intervals
comments
0 exact 1/1
1 26.9983 66/65, 65/64, 64/63
2 53.9965 33/32, 98/95
3 80.9948 22/21
4 107.9931 16/15
5 134.9913
6 161.9896
7 188.9879 135/121
8 215.9862 17/15
9 242.9844
10 269.9827 7/6
11 296.981 32/27, 19/16
12 323.9792 pseudo-6/5
13 350.9775 60/49, 49/40
14 377.9758 pseudo-5/4
15 404.974 24/19
16 431.9723
17 458.9706
18 485.9688 45/34 pseudo-4/3
19 512.9671 121/90
20 539.9654
21 566.9637
22 593.9619
23 620.9602 63/44
24 647.9585 16/11
25 674.9567
26 701.955 exact 3/2 just perfect fifth
27 728.9533 99/65, 195/128, 21/16
28 755.9515 99/64, 147/95
29 782.9498 11/7
30 809.9481 8/5
31 836.9463
32 863.9446
33 890.9429 405/242 pseudo-5/3
34 917.9412 17/10
35 944.9394
36 971.9377 7/4
37 998.936 16/9, 57/32
38 1025.9342 pseudo-9/5
39 1052.9325 90/49, 147/80
40 1079.9308 pseudo-15/8
41 1106.929
42 1133.9273
43 1160.9256
44 1187.9238 135/98 pseudo-2/1
45 1214.9221 121/60
46 1241.9204
47 1268.9187
48 1295.9169
49 1322.9152 189/88
50 1349.9135 24/11
51 1376.9117
52 1403.91 exact 9/4


Icon-Stub.png This page is a stub. You can help the Xenharmonic Wiki by expanding it.