13edf

From Xenharmonic Wiki
Jump to navigation Jump to search
← 12edf 13edf 14edf →
Prime factorization 13 (prime)
Step size 53.9965¢ 
Octave 22\13edf (1187.92¢)
Twelfth 35\13edf (1889.88¢)
Consistency limit 4
Distinct consistency limit 4

13EDF is the equal division of the just perfect fifth into 13 parts of 53.9965 cents each, corresponding to 22.2236 edo. It is nearly identical to every ninth step of 200edo.

Harmonics

Approximation of prime harmonics in 13edf
Harmonic 2 3 5 7 11 13 17 19
Error Absolute (¢) -12.1 -12.1 +21.5 -21.0 +6.4 -12.8 +8.7 -21.8
Relative (%) -22.4 -22.4 +39.8 -39.0 +11.9 -23.7 +16.2 -40.4
Steps
(reduced)
22
(9)
35
(9)
52
(0)
62
(10)
77
(12)
82
(4)
91
(0)
94
(3)
Approximation of prime harmonics in 13edf
Harmonic 23 29 31 37 41 43 47 53
Error Absolute (¢) +25.4 +2.0 -5.4 +12.3 -3.5 +22.1 -23.9 -15.9
Relative (%) +47.0 +3.8 -10.0 +22.7 -6.4 +40.9 -44.3 -29.5
Steps
(reduced)
101
(10)
108
(4)
110
(6)
116
(12)
119
(2)
121
(4)
123
(6)
127
(10)

Intervals

Intervals of 13edf
degree cents value corresponding
JI intervals
comments
0 exact 1/1
1 53.9965 33/32 pseudo-25/24
2 107.9931 17/16, 117/110, 16/15
3 161.9896 11/10
4 215.9862 17/15
5 269.9827 7/6
6 323.9792 77/64 pseudo-6/5
7 377.9758 56/45 pseudo-5/4
8 431.9723 9/7
9 485.9688 45/34 pseudo-4/3
10 539.9654 15/11
11 593.9619 55/39, 24/17
12 647.9585 16/11
13 701.9550 exact 3/2 just perfect fifth
14 755.9515 99/64
15 809.9481 51/32, 8/5
16 863.9446 33/20
17 917.9412 17/10
18 971.9377 7/4
19 1025.9342 29/16 pseudo-9/5
20 1079.9308 28/15 pseudo-15/8
21 1133.9273 52/27, 27/14
22 1187.9238 135/68 pseudo-octave
23 1241.9204 45/22
24 1295.9169 19/9, 36/17
25 1349.9135 24/11
26 1403.9100 exact 9/4 pythagorean major ninth


Icon-Stub.png This page is a stub. You can help the Xenharmonic Wiki by expanding it.