13edf
Jump to navigation
Jump to search
Prime factorization
13 (prime)
Step size
53.9965¢
Octave
22\13edf (1187.92¢)
Twelfth
35\13edf (1889.88¢)
Consistency limit
4
Distinct consistency limit
4
← 12edf | 13edf | 14edf → |
13EDF is the equal division of the just perfect fifth into 13 parts of 53.9965 cents each, corresponding to 22.2236 edo. It is nearly identical to every ninth step of 200edo.
Intervals
degree | cents value | corresponding JI intervals |
comments |
---|---|---|---|
0 | exact 1/1 | ||
1 | 53.9965 | 33/32 | pseudo-25/24 |
2 | 107.9931 | 17/16, 117/110, 16/15 | |
3 | 161.9896 | 11/10 | |
4 | 215.9862 | 17/15 | |
5 | 269.9827 | 7/6 | |
6 | 323.9792 | 77/64 | pseudo-6/5 |
7 | 377.9758 | 56/45 | pseudo-5/4 |
8 | 431.9723 | 9/7 | |
9 | 485.9688 | 45/34 | pseudo-4/3 |
10 | 539.9654 | 15/11 | |
11 | 593.9619 | 55/39, 24/17 | |
12 | 647.9585 | 16/11 | |
13 | 701.9550 | exact 3/2 | just perfect fifth |
14 | 755.9515 | 99/64 | |
15 | 809.9481 | 51/32, 8/5 | |
16 | 863.9446 | 33/20 | |
17 | 917.9412 | 17/10 | |
18 | 971.9377 | 7/4 | |
19 | 1025.9342 | 29/16 | pseudo-9/5 |
20 | 1079.9308 | 28/15 | pseudo-15/8 |
21 | 1133.9273 | 52/27, 27/14 | |
22 | 1187.9238 | 135/68 | pseudo-octave |
23 | 1241.9204 | 45/22 | |
24 | 1295.9169 | 19/9, 36/17 | |
25 | 1349.9135 | 24/11 | |
26 | 1403.9100 | exact 9/4 | pythagorean major ninth |