25edf
Jump to navigation
Jump to search
Prime factorization
52
Step size
28.0782¢
Octave
43\25edf (1207.36¢)
Twelfth
68\25edf (1909.32¢)
Consistency limit
2
Distinct consistency limit
2
← 24edf | 25edf | 26edf → |
25EDF is the equal division of the just perfect fifth into 25 parts of 28.0782 cents each, corresponding to 42.7378 edo (similar to every fourth step of 171edo).
It is related to the regular temperament which tempers out 703125/702464 and 5250987/5242880 in the 7-limit, which is supported by 43edo, 128edo, 171edo, 214edo, 299edo, and 385edo.
Harmonics
Harmonic | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | +7.4 | +7.4 | -6.6 | +0.6 | +4.3 | -4.2 | +8.7 | +12.7 | -9.2 | +10.7 | +7.5 |
Relative (%) | +26.2 | +26.2 | -23.4 | +2.0 | +15.2 | -14.9 | +31.1 | +45.3 | -32.7 | +38.1 | +26.9 | |
Steps (reduced) |
43 (18) |
68 (18) |
99 (24) |
120 (20) |
148 (23) |
158 (8) |
175 (0) |
182 (7) |
193 (18) |
208 (8) |
212 (12) |
Harmonic | 37 | 41 | 43 | 47 | 53 | 59 | 61 | 67 | 71 | 73 | 79 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | +10.1 | +0.8 | +2.6 | -11.0 | +5.7 | -11.5 | -13.1 | -7.1 | +4.9 | +12.9 | -11.5 |
Relative (%) | +36.0 | +3.0 | +9.3 | -39.1 | +20.1 | -41.1 | -46.7 | -25.1 | +17.3 | +46.1 | -41.0 | |
Steps (reduced) |
223 (23) |
229 (4) |
232 (7) |
237 (12) |
245 (20) |
251 (1) |
253 (3) |
259 (9) |
263 (13) |
265 (15) |
269 (19) |
Intervals
degree | cents value | corresponding JI intervals |
comments |
---|---|---|---|
0 | exact 1/1 | ||
1 | 28.0782 | 51/50 | |
2 | 56.1564 | 26/25 | |
3 | 84.2346 | 21/20 | |
4 | 112.3128 | 16/15 | |
5 | 140.391 | 13/12 | |
6 | 168.4692 | ||
7 | 196.5474 | 28/25 | |
8 | 224.6256 | 8/7 | |
9 | 252.7038 | ||
10 | 280.782 | 20/17 | |
11 | 308.8602 | pseudo-6/5 | |
12 | 336.9384 | ||
13 | 365.0166 | ||
14 | 393.0948 | pseudo-5/4 | |
15 | 421.173 | 51/40 | |
16 | 449.2512 | ||
17 | 477.3294 | ||
18 | 505.4076 | 75/56 | pseudo-4/3 |
19 | 533.4858 | ||
20 | 561.564 | ||
21 | 589.6422 | 45/32 | |
22 | 617.7204 | 10/7 | |
23 | 645.7986 | ||
24 | 673.8768 | ||
25 | 701.955 | exact 3/2 | just perfect fifth |
26 | 730.033 | 153/100 | |
27 | 757.1114 | 39/25 | |
28 | 786.1896 | 63/40 | |
29 | 814.2678 | 8/5 | |
30 | 842.346 | 13/8 | |
31 | 870.2452 | ||
32 | 898.5024 | 42/25 | |
33 | 926.5806 | 12/7 | |
34 | 954.6588 | ||
35 | 982.737 | 30/17 | |
36 | 1010.8152 | pseudo-9/5 | |
37 | 1038.8934 | ||
38 | 1066.9716 | ||
39 | 1095.0498 | pseudo-15/8 | |
40 | 1123.128 | 153/80 | |
41 | 1151.2062 | ||
42 | 1179.2844 | ||
43 | 1207.3526 | 225/112 | pseudo-2/1 |
44 | 1235.4408 | ||
45 | 1263.519 | ||
46 | 1291.5972 | 135/64 | |
47 | 1319.6754 | 15/7 | |
48 | 1347.7536 | ||
49 | 1375.8318 | ||
50 | 1403.91 | exact 9/4 |