24edf
Jump to navigation
Jump to search
Prime factorization
23 × 3
Step size
29.2481¢
Octave
41\24edf (1199.17¢)
(convergent)
Twelfth
65\24edf (1901.13¢)
(convergent)
Consistency limit
16
Distinct consistency limit
7
Special properties
← 23edf | 24edf | 25edf → |
(convergent)
(convergent)
Division of the just perfect fifth into 24 equal parts (24EDF) is related to 41 edo, but with the 3/2 rather than the 2/1 being just. The octave is about 0.8269 cents compressed and the step size is about 29.2481 cents. It is consistent to the 16-integer-limit.
Lookalikes: 41edo, 65edt, 95ed5
Harmonics
Harmonic | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | -0.8 | -0.8 | -7.7 | -5.3 | +1.9 | +5.2 | +8.7 | -8.3 | +11.9 | -9.2 | -7.7 |
Relative (%) | -2.8 | -2.8 | -26.5 | -18.1 | +6.6 | +17.7 | +29.8 | -28.5 | +40.6 | -31.5 | -26.2 | |
Steps (reduced) |
41 (17) |
65 (17) |
95 (23) |
115 (19) |
142 (22) |
152 (8) |
168 (0) |
174 (6) |
186 (18) |
199 (7) |
203 (11) |
Harmonic | 37 | 41 | 43 | 47 | 53 | 59 | 61 | 67 | 71 | 73 | 79 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | +7.8 | +5.5 | +10.8 | +3.1 | -0.2 | -10.4 | -9.6 | +3.5 | -9.2 | +1.2 | +10.7 |
Relative (%) | +26.5 | +18.9 | +37.0 | +10.5 | -0.7 | -35.5 | -32.8 | +11.9 | -31.3 | +4.2 | +36.7 | |
Steps (reduced) |
214 (22) |
220 (4) |
223 (7) |
228 (12) |
235 (19) |
241 (1) |
243 (3) |
249 (9) |
252 (12) |
254 (14) |
259 (19) |
Intervals
Cents Value | Approximate Ratios in the 11-limit | |
---|---|---|
0 | 1/1 | |
1 | 29.2481 | 81/80 |
2 | 58.49625 | 25/24, 28/27, 33/32 |
3 | 87.7444 | 21/20, 22/21 |
4 | 116.9925 | 16/15, 15/14 |
5 | 146.2406 | 12/11 |
6 | 175.48875 | 10/9, 11/10 |
7 | 204.7369 | 9/8 |
8 | 233.985 | 8/7 |
9 | 263.2331 | 7/6, 32/25 |
10 | 292.48125 | 32/27 |
11 | 321.7293 | 6/5 |
12 | 350.9775 | 11/9,27/22 |
13 | 380.2256 | 5/4 |
14 | 409.47375 | 14/11, 81/64 |
15 | 438.7219 | 9/7 |
16 | 467.97 | 21/16 |
17 | 497.2181 | 4/3 |
18 | 526.46625 | 15/11, 27/20 |
19 | 556.7144 | 11/8 |
20 | 584.9625 | 7/5 |
21 | 614.2106 | 10/7 |
22 | 643.45875 | 16/11 |
23 | 671.7069 | 22/15, 40/27 |
24 | 701.955 | 3/2 |
25 | 731.2031 | 32/21 |
26 | 760.45125 | 14/9, 25/16 |
27 | 789.6994 | 11/7, 128/81 |
28 | 818.9475 | 8/5 |
29 | 848.1956 | 18/11, 44/27 |
30 | 877.44375 | 5/3 |
31 | 906.6919 | 27/16 |
32 | 935.94 | 12/7 |
33 | 965.1881 | 7/4 |
34 | 994.43625 | 16/9 |
35 | 1023.6844 | 9/5, 20/11 |
36 | 1052.9325 | 11/6 |
37 | 1082.1806 | 15/8 |
38 | 1111.42875 | 40/21, 21/11 |
39 | 1140.6769 | 48/25, 27/14, 64/33 |
40 | 1169.925 | 160/81 |
41 | 1199.1731 | 2/1 |
42 | 1228.42125 | 81/40 |
43 | 1257.6694 | 25/12, 56/27, 33/16 |
44 | 1286.9175 | 21/10, 44/21 |
45 | 1316.1656 | 32/15, 15/7 |
46 | 1345.41375 | 24/11 |
47 | 1374.6619 | 20/9, 11/5 |
48 | 1403.91 | 9/4 |
This page is a stub. You can help the Xenharmonic Wiki by expanding it. |