106ed6
Jump to navigation
Jump to search
Prime factorization
2 × 53
Step size
29.2637¢
Octave
41\106ed6 (1199.81¢)
(convergent)
Twelfth
65\106ed6 (1902.14¢)
(convergent)
Consistency limit
16
Distinct consistency limit
10
← 105ed6 | 106ed6 | 107ed6 → |
(convergent)
(convergent)
Division of the sixth harmonic into 106 equal parts (106ED6) is related to 41 edo, but with the 6/1 rather than the 2/1 being just. The octave is about 0.19 cents compressed and the step size is about 29.26 cents. It is consistent to the 16-integer-limit.
Lookalikes: 24edf, 41edo, 65edt, 95ed5
Harmonics
Harmonic | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | -0.2 | +0.2 | -6.3 | -3.5 | +4.1 | +7.6 | +11.4 | -5.6 | -14.5 | -6.1 | -4.5 |
Relative (%) | -0.6 | +0.6 | -21.4 | -12.0 | +14.1 | +25.8 | +38.8 | -19.2 | -49.5 | -20.8 | -15.4 | |
Steps (reduced) |
41 (41) |
65 (65) |
95 (95) |
115 (9) |
142 (36) |
152 (46) |
168 (62) |
174 (68) |
185 (79) |
199 (93) |
203 (97) |
Harmonic | 37 | 41 | 43 | 47 | 53 | 59 | 61 | 67 | 71 | 73 | 79 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | +11.1 | +9.0 | +14.3 | +6.6 | +3.5 | -6.6 | -5.8 | +7.4 | -5.2 | +5.2 | -14.5 |
Relative (%) | +37.9 | +30.6 | +48.8 | +22.6 | +11.9 | -22.6 | -19.8 | +25.2 | -17.9 | +17.8 | -49.5 | |
Steps (reduced) |
214 (2) |
220 (8) |
223 (11) |
228 (16) |
235 (23) |
241 (29) |
243 (31) |
249 (37) |
252 (40) |
254 (42) |
258 (46) |
![]() |
This page is a stub. You can help the Xenharmonic Wiki by expanding it. |