106ed6

From Xenharmonic Wiki
Jump to navigation Jump to search
← 105ed6 106ed6 107ed6 →
Prime factorization 2 × 53
Step size 29.2637¢ 
Octave 41\106ed6 (1199.81¢)
(convergent)
Twelfth 65\106ed6 (1902.14¢)
(convergent)
Consistency limit 16
Distinct consistency limit 10

Division of the sixth harmonic into 106 equal parts (106ED6) is related to 41 edo, but with the 6/1 rather than the 2/1 being just. The octave is about 0.19 cents compressed and the step size is about 29.26 cents. It is consistent to the 16-integer-limit.

Lookalikes: 24edf, 41edo, 65edt, 95ed5

Harmonics

Approximation of prime harmonics in 106ed6
Harmonic 2 3 5 7 11 13 17 19 23 29 31
Error Absolute (¢) -0.2 +0.2 -6.3 -3.5 +4.1 +7.6 +11.4 -5.6 -14.5 -6.1 -4.5
Relative (%) -0.6 +0.6 -21.4 -12.0 +14.1 +25.8 +38.8 -19.2 -49.5 -20.8 -15.4
Steps
(reduced)
41
(41)
65
(65)
95
(95)
115
(9)
142
(36)
152
(46)
168
(62)
174
(68)
185
(79)
199
(93)
203
(97)
Approximation of prime harmonics in 106ed6
Harmonic 37 41 43 47 53 59 61 67 71 73 79
Error Absolute (¢) +11.1 +9.0 +14.3 +6.6 +3.5 -6.6 -5.8 +7.4 -5.2 +5.2 -14.5
Relative (%) +37.9 +30.6 +48.8 +22.6 +11.9 -22.6 -19.8 +25.2 -17.9 +17.8 -49.5
Steps
(reduced)
214
(2)
220
(8)
223
(11)
228
(16)
235
(23)
241
(29)
243
(31)
249
(37)
252
(40)
254
(42)
258
(46)


Icon-Stub.png This page is a stub. You can help the Xenharmonic Wiki by expanding it.