95ed5

From Xenharmonic Wiki
Jump to navigation Jump to search
← 94ed5 95ed5 96ed5 →
Prime factorization 5 × 19
Step size 29.3296 ¢ 
Octave 41\95ed5 (1202.51 ¢)
Twelfth 65\95ed5 (1906.43 ¢) (→ 13\19ed5)
Consistency limit 12
Distinct consistency limit 10

95 equal divisions of the 5th harmonic (abbreviated 95ed5) is a nonoctave tuning system that divides the interval of 5/1 into 95 equal parts of about 29.3 ¢ each. Each step represents a frequency ratio of 51/95, or the 95th root of 5.

Theory

95ed5 is related to 41edo, but with the 5th harmonic rather than the octave being just. The octave is about 2.51 cents stretched. This tuning has a generally sharp tendency for harmonics up to 12. Unlike 41edo, it is only consistent up to the 12-integer-limit, with discrepancy for the 13th harmonic.

Harmonics

Approximation of harmonics in 95ed5
Harmonic 2 3 4 5 6 7 8 9 10 11 12
Error Absolute (¢) +2.5 +4.5 +5.0 +0.0 +7.0 +4.1 +7.5 +8.9 +2.5 +13.5 +9.5
Relative (%) +8.6 +15.2 +17.1 +0.0 +23.8 +13.9 +25.7 +30.5 +8.6 +46.0 +32.4
Steps
(reduced)
41
(41)
65
(65)
82
(82)
95
(0)
106
(11)
115
(20)
123
(28)
130
(35)
136
(41)
142
(47)
147
(52)
Approximation of harmonics in 95ed5 (continued)
Harmonic 13 14 15 16 17 18 19 20 21 22 23 24
Error Absolute (¢) -11.8 +6.6 +4.5 +10.1 -6.9 +11.5 +5.8 +5.0 +8.6 -13.3 -2.3 +12.0
Relative (%) -40.1 +22.5 +15.2 +34.3 -23.6 +39.1 +19.9 +17.1 +29.2 -45.4 -7.8 +41.0
Steps
(reduced)
151
(56)
156
(61)
160
(65)
164
(69)
167
(72)
171
(76)
174
(79)
177
(82)
180
(85)
182
(87)
185
(90)
188
(93)

Subsets and supersets

Since 95 factors into primes as 5 × 19, 95ed5 contains 5ed5 and 19ed5 as subset ed5's.

Intervals

# Cents Approximate ratios
0 0.0 1/1
1 29.3 49/48, 50/49, 64/63, 81/80
2 58.7 25/24, 28/27, 33/32, 36/35
3 88.0 19/18, 20/19, 21/20, 22/21
4 117.3 14/13, 15/14, 16/15
5 146.6 12/11, 13/12
6 176.0 10/9, 11/10, 21/19
7 205.3 9/8
8 234.6 8/7, 15/13
9 264.0 7/6, 22/19
10 293.3 13/11, 19/16, 32/27
11 322.6 6/5
12 352.0 11/9, 16/13
13 381.3 5/4, 26/21
14 410.6 19/15
15 439.9 9/7, 32/25
16 469.3 21/16, 13/10
17 498.6 4/3
18 527.9 15/11, 19/14, 27/20
19 557.3 11/8, 18/13, 26/19
20 586.6 7/5, 45/32
21 615.9 10/7, 64/45
22 645.3 13/9, 16/11, 19/13
23 674.6 22/15, 28/19, 40/27
24 703.9 3/2
25 733.2 20/13, 32/21
26 762.6 14/9, 25/16
27 791.9 11/7, 19/12, 30/19
28 821.2 8/5, 21/13
29 850.6 13/8, 18/11
30 879.9 5/3
31 909.2 22/13, 27/16, 32/19
32 938.5 12/7, 19/11
33 967.9 7/4, 26/15
34 997.2 16/9
35 1026.5 9/5
36 1055.9 11/6
37 1085.2 13/7, 15/8
38 1114.5 19/10, 21/11
39 1143.9 27/14, 35/18
40 1173.2 49/25, 55/28, 63/32
41 1202.5 2/1
42 1231.8 45/22, 49/24, 55/27, 81/40
43 1261.2 25/12, 33/16
44 1290.5 19/9, 21/10
45 1319.8 15/7
46 1349.2 13/6
47 1378.5 11/5
48 1407.8 9/4
49 1437.2 16/7
50 1466.5 7/3
51 1495.8 19/8
52 1525.1 12/5
53 1554.5 22/9, 27/11
54 1583.8 5/2
55 1613.1 28/11, 33/13
56 1642.5 18/7
57 1671.8 21/8
58 1701.1 8/3
59 1730.4 19/7
60 1759.8 11/4
61 1789.1 14/5
62 1818.4 20/7
63 1847.8 26/9
64 1877.1 44/15
65 1906.4 3/1
66 1935.8 40/13
67 1965.1 25/8, 28/9
68 1994.4 19/6, 22/7
69 2023.7 16/5
70 2053.1 13/4
71 2082.4 10/3
72 2111.7 27/8
73 2141.1 24/7
74 2170.4 7/2
75 2199.7 25/7
76 2229.1 18/5
77 2258.4 11/3
78 2287.7 15/4
79 2317.0 19/5
80 2346.4 27/7, 35/9
81 2375.7 55/14, 63/16
82 2405.0 4/1
83 2434.4 49/12, 81/20
84 2463.7 25/6, 33/8
85 2493.0 21/5
86 2522.3 30/7
87 2551.7 13/3
88 2581.0 22/5
89 2610.3 9/2
90 2639.7 16/7
91 2669.0 14/3
92 2698.3 19/4
93 2727.7 24/5
94 2757.0 39/8
95 2786.3 5/1

As a generator

95ed5 can also be thought of as a generator of the 2.3.5.7.11.19-subgroup temperament which tempers out 1540/1539, 3025/3024, 6875/6859, and 184877/184320, which is a cluster temperament with 41 clusters of notes in an octave. While the small chroma interval between adjacent notes in each cluster represents 385/384 ~ 441/440 ~ 1479016/1476225 ~ 194579/194400 ~ 204800/204687 ~ 176000/175959 tempered together, the step interval is very versatile, representing 16807/16500 ~ 19551/19200 ~ 18000/17689 ~ 72900/71687 ~ 273375/268912 ~ 295245/290521 ~ 12100/11907 ~ 64/63 all tempered together. This temperament is supported by 41edo, 491edo (491e val), and 532edo (532d val) among others.

See also