95ed5

From Xenharmonic Wiki
Jump to navigation Jump to search
← 94ed595ed596ed5 →
Prime factorization 5 × 19
Step size 29.3296¢ 
Octave 41\95ed5 (1202.51¢)
Twelfth 65\95ed5 (1906.43¢) (→13\19ed5)
Consistency limit 12
Distinct consistency limit 9

Division of the 5th harmonic into 95 equal parts (95ed5) is related to 41 edo, but with the 5/1 rather than the 2/1 being just. The octave is about 2.5143 cents stretched and the step size is about 29.3296 cents. This tuning has a generally sharp tendency for harmonics up to 12. Unlike 41edo, it is only consistent up to the 12-integer-limit, with discrepancy for the 13th harmonic.

Intervals

degree cents value corresponding
JI intervals
comments
0 0.0000 exact 1/1
1 29.3296
2 58.6592 931/900
3 87.9889 81/77, 20/19
4 117.3185 1280/1197
5 146.6481 209/192, 49/45
6 175.9777 448/405
7 205.3073
8 234.6369 63/55, 55/48
9 263.9666 220/189
10 293.2962
11 322.6258 135/112
12 351.9554 60/49, 256/209
13 381.2850 399/320 pseudo-5/4
14 410.6147 19/15
15 439.9443 1200/931
16 469.2739 21/16
17 498.6035 4/3
18 527.9331
19 557.2627 243/176
20 586.5924 108/77, 275/196, 80/57
21 615.9220
22 645.2516 209/144, 196/135
23 674.5812 2025/1372
24 703.9108 1539/1024 pseudo-3/2
25 733.2405 171/112, 84/55, 55/36
26 762.5701
27 791.8997
28 821.2293 45/28
29 850.5589 1024/627
30 879.8885 133/80 pseudo-5/3
31 909.2182 1232/729, 3645/2156, 225/133
32 938.5478
33 967.8774 7/4
34 997.2070 16/9
35 1026.5366
36 1055.8662 81/44
37 1085.1959 144/77, 275/147, 320/171
38 1114.5255
39 1143.8551 209/108, 405/209
40 1173.1847 675/343
41 1202.5143 513/256, 441/220 pseudo-octave
42 1231.8440 57/28, 112/55, 55/27
43 1261.1736
44 1290.5032
45 1319.8328 15/7
46 1349.1624
47 1378.4920 133/60, 539/243
48 1407.8217 1215/539, 300/133
49 1437.1513
50 1466.4809 7/3
51 1495.8105
52 1525.1401
53 1554.4698 27/11, 275/112, 140/57
54 1583.7994 1100/441, 1280/513 pseudo-5/2
55 1613.1290 343/135
56 1642.4586 209/81, 540/209
57 1671.7882
58 1701.1178 171/64, 147/55, 385/144
59 1730.4475 220/81
60 1759.7771
61 1789.1067 45/16
62 1818.4363 20/7
63 1847.7659
64 1877.0956 133/45, 2156/729, 3645/1232
65 1906.4252 400/133 pseudo-3/1
66 1935.7548 3135/1024
67 1965.0844 28/9
68 1994.4140
69 2023.7436
70 2053.0733 36/11, 275/84, 560/171
71 2082.4029 5120/1539 pseudo-10/3
72 2111.7325 1372/405
73 2141.0621 675/196, 720/209
74 2170.3917
75 2199.7214 57/16, 196/55, 385/108
76 2229.0510 880/243
77 2258.3806
78 2287.7102 15/4
79 2317.0398 80/21
80 2346.3694 931/240
81 2375.6991 75/19
82 2405.0287 1600/399 pseudo-4/1
83 2434.3583 1045/256, 49/12
84 2463.6879 112/27
85 2493.0175
86 2522.3472 189/44
87 2551.6768 48/11, 275/63
88 2581.0064
89 2610.3360 2025/448
90 2639.6656 225/49, 960/209
91 2668.9952 1197/256
92 2698.3249 19/4, 385/81
93 2727.6545 4500/931
94 2756.9841
95 2786.3137 exact 5/1 just major third plus two octaves

Harmonics

Approximation of harmonics in 95ed5
Harmonic 2 3 4 5 6 7 8 9 10 11 12
Error Absolute (¢) +2.5 +4.5 +5.0 +0.0 +7.0 +4.1 +7.5 +8.9 +2.5 +13.5 +9.5
Relative (%) +8.6 +15.2 +17.1 +0.0 +23.8 +13.9 +25.7 +30.5 +8.6 +46.0 +32.4
Steps
(reduced)
41
(41)
65
(65)
82
(82)
95
(0)
106
(11)
115
(20)
123
(28)
130
(35)
136
(41)
142
(47)
147
(52)
Approximation of harmonics in 95ed5
Harmonic 13 14 15 16 17 18 19 20 21 22 23
Error Absolute (¢) -11.8 +6.6 +4.5 +10.1 -6.9 +11.5 +5.8 +5.0 +8.6 -13.3 -2.3
Relative (%) -40.1 +22.5 +15.2 +34.3 -23.6 +39.1 +19.9 +17.1 +29.2 -45.4 -7.8
Steps
(reduced)
151
(56)
156
(61)
160
(65)
164
(69)
167
(72)
171
(76)
174
(79)
177
(82)
180
(85)
182
(87)
185
(90)

95ed5 as a generator

95ed5 can also be thought of as a generator of the 2.3.5.7.11.19 subgroup temperament which tempers out 1540/1539, 3025/3024, 6875/6859, and 184877/184320, which is a cluster temperament with 41 clusters of notes in an octave. While the small chroma interval between adjacent notes in each cluster represents 385/384 ~ 441/440 ~ 1479016/1476225 ~ 194579/194400 ~ 204800/204687 ~ 176000/175959 tempered together, the step interval is very versatile, representing 16807/16500 ~ 19551/19200 ~ 18000/17689 ~ 72900/71687 ~ 273375/268912 ~ 295245/290521 ~ 12100/11907 ~ 64/63 all tempered together. This temperament is supported by 41edo, 491edo (491e val), and 532edo (532d val) among others.