96ed5

From Xenharmonic Wiki
Jump to navigation Jump to search
← 95ed5 96ed5 97ed5 →
Prime factorization 25 × 3
Step size 29.0241¢ 
Octave 41\96ed5 (1189.99¢)
Twelfth 66\96ed5 (1915.59¢) (→11\16ed5)
Consistency limit 2
Distinct consistency limit 2

96 equal divisions of the 5th harmonic (abbreviated 96ed5) is a nonoctave tuning system that divides the interval of 5/1 into 96 equal parts of about 29 ¢ each. Each step represents a frequency ratio of 51/96, or the 96th root of 5.

Theory

This non-octave, non-tritave scale features a well-balanced harmonic series segment from 5 to 9, and performs exceptionally well across all prime harmonics from 5 to 23, with the exception of 19.

This system can be approximated as 41.34495 EDO, meaning each step of 96ed5 corresponds roughly to three steps of 124edo.

96ed5 sets a height record on the Riemann zeta function with primes 2 and 3 removed, approximating 41.3478 EDO. This record remains unbeaten until approximately 98.62575 EDO.

Additionally, 96ed5 is related to 186zpi.

Harmonic series

Approximation of harmonics in 96ed5
Harmonic 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
Error Absolute (¢) -10.0 +13.6 +9.0 +0.0 +3.6 -2.0 -1.0 -1.8 -10.0 -0.9 -6.4 +0.2 -12.0 +13.6 -11.0
Relative (%) -34.5 +47.0 +31.0 +0.0 +12.5 -7.0 -3.5 -6.0 -34.5 -3.0 -22.0 +0.6 -41.5 +47.0 -38.0
Steps
(reduced)
41
(41)
66
(66)
83
(83)
96
(0)
107
(11)
116
(20)
124
(28)
131
(35)
137
(41)
143
(47)
148
(52)
153
(57)
157
(61)
162
(66)
165
(69)
Approximation of harmonics in 96ed5
Harmonic 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32
Error Absolute (¢) +0.1 -11.8 +10.7 +9.0 +11.6 -10.9 -0.8 +12.6 +0.0 -9.9 +11.9 +7.0 +4.3 +3.6 +4.9 +8.0
Relative (%) +0.4 -40.5 +37.0 +31.0 +40.0 -37.5 -2.6 +43.5 +0.0 -33.9 +40.9 +24.0 +14.7 +12.5 +16.9 +27.5
Steps
(reduced)
169
(73)
172
(76)
176
(80)
179
(83)
182
(86)
184
(88)
187
(91)
190
(94)
192
(0)
194
(2)
197
(5)
199
(7)
201
(9)
203
(11)
205
(13)
207
(15)

Optimization

In the 32-integer-limit and 5.7.11.13.17.23 subgroup, the lowest relative error is 41.346437627379-edo, or 41<1189.94532112775>, or 29.023056612872 cents.

Approximation of harmonics in optimized 96ed5
Harmonic 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
Error Absolute (¢) -10.1 +13.6 +8.9 -0.1 +3.5 -2.2 -1.1 -1.9 -10.2 -1.0 -6.5 +0.0 -12.2 +13.5 -11.2
Relative (%) -34.6 +46.7 +30.7 -0.3 +12.1 -7.4 -3.9 -6.5 -35.0 -3.5 -22.5 +0.0 -42.1 +46.4 -38.6
Steps 41 66 83 96 107 116 124 131 137 143 148 153 157 162 165
Approximation of harmonics in optimized 96ed5
Harmonic 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32
Error Absolute (¢) -0.1 -11.9 +10.5 +8.8 +11.4 -11.1 -1.0 +12.4 -0.2 -10.1 +11.7 +6.8 +4.1 +3.4 +4.7 +7.8
Relative (%) -0.2 -41.2 +36.3 +30.4 +39.3 -38.2 -3.3 +42.8 -0.7 -34.6 +40.2 +23.3 +14.0 +11.8 +16.2 +26.8
Steps 169 172 176 179 182 184 187 190 192 194 197 199 201 203 205 207

Intervals

Steps Cents Approximate ratios
0 0 1/1
1 29.024
2 58.048 30/29, 31/30
3 87.072 41/39
4 116.096 31/29
5 145.121 25/23, 37/34
6 174.145 21/19
7 203.169
8 232.193
9 261.217 36/31, 43/37
10 290.241 13/11
11 319.265
12 348.289
13 377.313 41/33
14 406.337 43/34
15 435.362
16 464.386 17/13
17 493.41
18 522.434 23/17
19 551.458
20 580.482 7/5
21 609.506 37/26
22 638.53
23 667.554 25/17
24 696.578
25 725.603 35/23, 38/25
26 754.627 17/11
27 783.651 11/7
28 812.675
29 841.699
30 870.723 38/23, 43/26
31 899.747 37/22, 42/25
32 928.771
33 957.795 33/19
34 986.819 23/13
35 1015.844
36 1044.868 42/23
37 1073.892 13/7
38 1102.916
39 1131.94 25/13
40 1160.964 43/22
41 1189.988
42 1219.012
43 1248.036 35/17
44 1277.06 23/11
45 1306.085
46 1335.109
47 1364.133 11/5
48 1393.157 38/17
49 1422.181 25/11
50 1451.205
51 1480.229
52 1509.253
53 1538.277 17/7
54 1567.301 42/17
55 1596.326
56 1625.35
57 1654.374 13/5
58 1683.398 37/14
59 1712.422 35/13
60 1741.446 41/15
61 1770.47
62 1799.494
63 1828.518
64 1857.542 38/13
65 1886.567
66 1915.591
67 1944.615 43/14
68 1973.639
69 2002.663 35/11
70 2031.687 42/13
71 2060.711 23/7
72 2089.735
73 2118.759 17/5
74 2147.783 38/11
75 2176.808
76 2205.832 25/7
77 2234.856
78 2263.88 37/10
79 2292.904
80 2321.928 42/11
81 2350.952
82 2379.976
83 2409
84 2438.024
85 2467.049
86 2496.073
87 2525.097 43/10
88 2554.121
89 2583.145
90 2612.169
91 2641.193 23/5
92 2670.217
93 2699.241
94 2728.266 29/6
95 2757.29
96 2786.314 5/1