65edt

From Xenharmonic Wiki
Jump to: navigation, search

Division of the third harmonic into 65 equal parts (65EDT) is almost identical to 41 edo, but with the 3/1 rather than the 2/1 being just. The octave is about 0.3053 cents compressed and the step size is about 29.2608 cents. It is consistent to the 16-integer-limit.

degree cents value hekts corresponding
JI intervals
comments
0 exact 1/1
1 29.2608 20 57/56, 56/55
2 58.5217 40 30/29
3 87.7825 60 21/20, 20/19
4 117.0434 80 15/14
5 146.3042 100 49/45, 12/11
6 175.5651 120 21/19, 87/80, 72/65 pseudo-10/9
7 204.8259 140 9/8
8 234.0868 160 8/7
9 263.3476 180 7/6
10 292.6085 200 45/38, 32/27
11 321.8693 220 65/54 pseudo-6/5
12 351.1302 240 11/9, 27/22
13 380.391 260 56/45, 81/65 pseudo-5/4
14 409.6518 280 19/15
15 438.9127 300 9/7
16 468.1735 320 21/16
17 497.4344 340 4/3
18 526.6952 360 19/14
19 555.9561 380 40/29
20 585.2169 400 7/5
21 614.4778 420 10/7
22 643.7386 440 29/20
23 672.9995 460 28/19
24 702.2603 480 3/2
25 731.5212 500 32/21
26 760.782 520 45/29
27 790.0428 540 30/19
28 819.3037 560 45/28 pseudo-8/5
29 848.5645 580 18/11
30 877.8254 600 108/65 pseudo-5/3
31 907.0862 620 27/16
32 936.3471 640 12/7
33 965.6079 660 7/4
34 994.8688 680 16/9
35 1024.1296 700 65/36 pseudo-9/5
36 1053.3905 720 11/6
37 1082.6513 740 28/15
38 1111.9122 760 19/10
39 1141.173 780 29/15
40 1170.4338 800 55/28
41 1199.6947 820 2/1
42 1228.9555 840 57/28
43 1258.2164 860 60/29
44 1287.4772 880 21/10
45 1316.7381 900 15/7
46 1345.9989 920 87/40
47 1375.2598 940 42/19
48 1404.5206 960 9/4
49 1433.7815 980 16/7
50 1463.0423 1000 7/3
51 1492.3032 1020 45/19
52 1521.564 1040 65/27 pseudo-12/5
53 1550.8248 1060 22/9, 27/11
54 1580.0857 1080 162/65 pseudo-5/2
55 1609.3465 1100 38/15
56 1638.6074 1120 18/7
57 1667.8682 1140 21/8
58 1697.1291 1160 8/3
59 1726.3899 1180 19/7
60 1755.6508 1200 11/4
61 1784.9116 1220 14/5
62 1814.1725 1240 20/7
63 1843.4333 1260 29/10
64 1872.6942 1280 56/19
65 1901.9550 1300 exact 3/1 just perfect fifth plus an octave