65edt
Jump to navigation
Jump to search
Prime factorization
5 × 13
Step size
29.2608¢
Octave
41\65edt (1199.69¢)
(convergent)
Consistency limit
16
Distinct consistency limit
10
← 64edt | 65edt | 66edt → |
(convergent)
Division of the third harmonic into 65 equal parts (65EDT) is almost identical to 41 edo, but with the 3/1 rather than the 2/1 being just. The octave is about 0.3053 cents compressed and the step size is about 29.2608 cents. It is consistent to the 16-integer-limit.
Intervals
Degree | Cent value | Hekts | Corresponding JI intervals |
Comments |
---|---|---|---|---|
0 | exact 1/1 | |||
1 | 29.2608 | 20 | 57/56, 56/55 | |
2 | 58.5217 | 40 | 30/29 | |
3 | 87.7825 | 60 | 21/20, 20/19 | |
4 | 117.0434 | 80 | 15/14 | |
5 | 146.3042 | 100 | 49/45, 12/11 | |
6 | 175.5651 | 120 | 21/19, 87/80, 72/65 | pseudo-10/9 |
7 | 204.8259 | 140 | 9/8 | |
8 | 234.0868 | 160 | 8/7 | |
9 | 263.3476 | 180 | 7/6 | |
10 | 292.6085 | 200 | 45/38, 32/27 | |
11 | 321.8693 | 220 | 65/54 | pseudo-6/5 |
12 | 351.1302 | 240 | 11/9, 27/22 | |
13 | 380.391 | 260 | 56/45, 81/65 | pseudo-5/4 |
14 | 409.6518 | 280 | 19/15 | |
15 | 438.9127 | 300 | 9/7 | |
16 | 468.1735 | 320 | 21/16 | |
17 | 497.4344 | 340 | 4/3 | |
18 | 526.6952 | 360 | 19/14 | |
19 | 555.9561 | 380 | 40/29 | |
20 | 585.2169 | 400 | 7/5 | |
21 | 614.4778 | 420 | 10/7 | |
22 | 643.7386 | 440 | 29/20 | |
23 | 672.9995 | 460 | 28/19 | |
24 | 702.2603 | 480 | 3/2 | |
25 | 731.5212 | 500 | 32/21 | |
26 | 760.782 | 520 | 45/29 | |
27 | 790.0428 | 540 | 30/19 | |
28 | 819.3037 | 560 | 45/28 | pseudo-8/5 |
29 | 848.5645 | 580 | 18/11 | |
30 | 877.8254 | 600 | 108/65 | pseudo-5/3 |
31 | 907.0862 | 620 | 27/16 | |
32 | 936.3471 | 640 | 12/7 | |
33 | 965.6079 | 660 | 7/4 | |
34 | 994.8688 | 680 | 16/9 | |
35 | 1024.1296 | 700 | 65/36 | pseudo-9/5 |
36 | 1053.3905 | 720 | 11/6 | |
37 | 1082.6513 | 740 | 28/15 | |
38 | 1111.9122 | 760 | 19/10 | |
39 | 1141.173 | 780 | 29/15 | |
40 | 1170.4338 | 800 | 55/28 | |
41 | 1199.6947 | 820 | 2/1 | |
42 | 1228.9555 | 840 | 57/28 | |
43 | 1258.2164 | 860 | 60/29 | |
44 | 1287.4772 | 880 | 21/10 | |
45 | 1316.7381 | 900 | 15/7 | |
46 | 1345.9989 | 920 | 87/40 | |
47 | 1375.2598 | 940 | 42/19 | |
48 | 1404.5206 | 960 | 9/4 | |
49 | 1433.7815 | 980 | 16/7 | |
50 | 1463.0423 | 1000 | 7/3 | |
51 | 1492.3032 | 1020 | 45/19 | |
52 | 1521.564 | 1040 | 65/27 | pseudo-12/5 |
53 | 1550.8248 | 1060 | 22/9, 27/11 | |
54 | 1580.0857 | 1080 | 162/65 | pseudo-5/2 |
55 | 1609.3465 | 1100 | 38/15 | |
56 | 1638.6074 | 1120 | 18/7 | |
57 | 1667.8682 | 1140 | 21/8 | |
58 | 1697.1291 | 1160 | 8/3 | |
59 | 1726.3899 | 1180 | 19/7 | |
60 | 1755.6508 | 1200 | 11/4 | |
61 | 1784.9116 | 1220 | 14/5 | |
62 | 1814.1725 | 1240 | 20/7 | |
63 | 1843.4333 | 1260 | 29/10 | |
64 | 1872.6942 | 1280 | 56/19 | |
65 | 1901.9550 | 1300 | exact 3/1 | just perfect fifth plus an octave |
Harmonics
Harmonic | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | -0.3 | +0.0 | -0.6 | -6.5 | -0.3 | -3.8 | -0.9 | +0.0 | -6.8 | +3.7 | -0.6 |
Relative (%) | -1.0 | +0.0 | -2.1 | -22.3 | -1.0 | -13.1 | -3.1 | +0.0 | -23.4 | +12.7 | -2.1 | |
Steps (reduced) |
41 (41) |
65 (0) |
82 (17) |
95 (30) |
106 (41) |
115 (50) |
123 (58) |
130 (0) |
136 (6) |
142 (12) |
147 (17) |
Harmonic | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | +7.1 | -4.1 | -6.5 | -1.2 | +10.9 | -0.3 | -6.1 | -7.1 | -3.8 | +3.4 | +14.2 |
Relative (%) | +24.3 | -14.1 | -22.3 | -4.2 | +37.1 | -1.0 | -20.9 | -24.4 | -13.1 | +11.7 | +48.7 | |
Steps (reduced) |
152 (22) |
156 (26) |
160 (30) |
164 (34) |
168 (38) |
171 (41) |
174 (44) |
177 (47) |
180 (50) |
183 (53) |
186 (56) |