66edt
Jump to navigation
Jump to search
Prime factorization
2 × 3 × 11
Step size
28.8175¢
Octave
42\66edt (1210.34¢) (→7\11edt)
Consistency limit
2
Distinct consistency limit
2
This page is a stub. You can help the Xenharmonic Wiki by expanding it. |
← 65edt | 66edt | 67edt → |
66 equal divisions of the tritave, perfect twelfth, or 3rd harmonic (abbreviated 66edt or 66ed3), is a nonoctave tuning system that divides the interval of 3/1 into 66 equal parts of about 28.8 ¢ each. Each step represents a frequency ratio of 31/66, or the 66th root of 3.
Intervals
Steps | Cents | Hekts | Approximate ratios |
---|---|---|---|
0 | 0 | 0 | 1/1 |
1 | 28.8 | 19.7 | |
2 | 57.6 | 39.4 | |
3 | 86.5 | 59.1 | |
4 | 115.3 | 78.8 | 31/29 |
5 | 144.1 | 98.5 | |
6 | 172.9 | 118.2 | 21/19 |
7 | 201.7 | 137.9 | |
8 | 230.5 | 157.6 | |
9 | 259.4 | 177.3 | |
10 | 288.2 | 197 | 13/11 |
11 | 317 | 216.7 | 6/5 |
12 | 345.8 | 236.4 | 11/9 |
13 | 374.6 | 256.1 | |
14 | 403.4 | 275.8 | 29/23 |
15 | 432.3 | 295.5 | 9/7 |
16 | 461.1 | 315.2 | 17/13 |
17 | 489.9 | 334.8 | |
18 | 518.7 | 354.5 | 31/23 |
19 | 547.5 | 374.2 | |
20 | 576.4 | 393.9 | |
21 | 605.2 | 413.6 | 27/19 |
22 | 634 | 433.3 | 13/9, 36/25 |
23 | 662.8 | 453 | 22/15 |
24 | 691.6 | 472.7 | |
25 | 720.4 | 492.4 | |
26 | 749.3 | 512.1 | |
27 | 778.1 | 531.8 | |
28 | 806.9 | 551.5 | 35/22 |
29 | 835.7 | 571.2 | 34/21 |
30 | 864.5 | 590.9 | |
31 | 893.3 | 610.6 | |
32 | 922.2 | 630.3 | 29/17 |
33 | 951 | 650 | 26/15 |
34 | 979.8 | 669.7 | |
35 | 1008.6 | 689.4 | 34/19 |
36 | 1037.4 | 709.1 | 31/17 |
37 | 1066.2 | 728.8 | |
38 | 1095.1 | 748.5 | |
39 | 1123.9 | 768.2 | |
40 | 1152.7 | 787.9 | 35/18 |
41 | 1181.5 | 807.6 | |
42 | 1210.3 | 827.3 | |
43 | 1239.2 | 847 | |
44 | 1268 | 866.7 | 25/12, 27/13 |
45 | 1296.8 | 886.4 | 19/9 |
46 | 1325.6 | 906.1 | |
47 | 1354.4 | 925.8 | |
48 | 1383.2 | 945.5 | |
49 | 1412.1 | 965.2 | |
50 | 1440.9 | 984.8 | |
51 | 1469.7 | 1004.5 | 7/3 |
52 | 1498.5 | 1024.2 | |
53 | 1527.3 | 1043.9 | |
54 | 1556.1 | 1063.6 | 27/11 |
55 | 1585 | 1083.3 | 5/2 |
56 | 1613.8 | 1103 | 33/13 |
57 | 1642.6 | 1122.7 | |
58 | 1671.4 | 1142.4 | |
59 | 1700.2 | 1162.1 | |
60 | 1729.1 | 1181.8 | 19/7 |
61 | 1757.9 | 1201.5 | |
62 | 1786.7 | 1221.2 | |
63 | 1815.5 | 1240.9 | |
64 | 1844.3 | 1260.6 | |
65 | 1873.1 | 1280.3 | |
66 | 1902 | 1300 | 3/1 |
Harmonics
Harmonic | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | +10.3 | +0.0 | -8.1 | +9.0 | +10.3 | +2.8 | +2.2 | +0.0 | -9.5 | -1.6 | -8.1 |
Relative (%) | +35.9 | +0.0 | -28.3 | +31.2 | +35.9 | +9.8 | +7.6 | +0.0 | -33.0 | -5.5 | -28.3 | |
Steps (reduced) |
42 (42) |
66 (0) |
83 (17) |
97 (31) |
108 (42) |
117 (51) |
125 (59) |
132 (0) |
138 (6) |
144 (12) |
149 (17) |
Harmonic | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | -2.6 | +13.2 | +9.0 | +12.5 | -6.0 | +10.3 | +3.2 | +0.8 | +2.8 | +8.7 | -10.6 |
Relative (%) | -9.1 | +45.7 | +31.2 | +43.5 | -20.8 | +35.9 | +11.1 | +2.9 | +9.8 | +30.3 | -36.7 | |
Steps (reduced) |
154 (22) |
159 (27) |
163 (31) |
167 (35) |
170 (38) |
174 (42) |
177 (45) |
180 (48) |
183 (51) |
186 (54) |
188 (56) |