67edt
Jump to navigation
Jump to search
Prime factorization
67 (prime)
Step size
28.3874¢
Octave
42\67edt (1192.27¢)
Consistency limit
2
Distinct consistency limit
2
← 66edt | 67edt | 68edt → |
67EDT is the equal division of the third harmonic into 67 parts of 28.3874 cents each, corresponding to 42.2723 edo. It is related to the regular temperament which tempers out 2100875/2097152 and |-36 45 -14 -1> in the 7-limit, which is supported by 296, 465, 761, and 1057 EDOs among others.
Related regular temperaments
296&465 temperament
7-limit
Commas: 2100875/2097152, |-36 45 -14 -1>
POTE generator: ~64/63 = 28.3825
Mapping: [<1 0 -3 6|, <0 67 225 -135|]
11-limit
Commas: 46656/46585, 2100875/2097152, 21437500/21434787
POTE generator: ~64/63 = 28.3824
Mapping: [<1 0 -3 6 1|, <0 67 225 -135 104|]
EDOs: 296, 465, 761, 1057
13-limit
Commas: 1575/1573, 46656/46585, 199927/199650, 216513/216320
POTE generator: ~64/63 = 28.3825
Mapping: [<1 0 -3 6 1 -2|, <0 67 225 -135 104 241|]
EDOs: 296, 465, 761, 1057
Intervals
Steps | Cents | Approximate ratios |
---|---|---|
0 | 0 | 1/1 |
1 | 28.387 | |
2 | 56.775 | 30/29, 31/30 |
3 | 85.162 | |
4 | 113.55 | 31/29 |
5 | 141.937 | 13/12, 25/23 |
6 | 170.324 | 21/19 |
7 | 198.712 | 28/25 |
8 | 227.099 | 33/29 |
9 | 255.486 | 29/25, 36/31 |
10 | 283.874 | 33/28 |
11 | 312.261 | 6/5 |
12 | 340.649 | 28/23 |
13 | 369.036 | 21/17, 31/25 |
14 | 397.423 | 29/23, 34/27 |
15 | 425.811 | 23/18 |
16 | 454.198 | 13/10 |
17 | 482.586 | 33/25 |
18 | 510.973 | |
19 | 539.36 | 15/11 |
20 | 567.748 | 25/18 |
21 | 596.135 | 31/22 |
22 | 624.523 | 33/23 |
23 | 652.91 | |
24 | 681.297 | |
25 | 709.685 | |
26 | 738.072 | 23/15 |
27 | 766.459 | 14/9 |
28 | 794.847 | |
29 | 823.234 | 29/18 |
30 | 851.622 | 18/11 |
31 | 880.009 | |
32 | 908.396 | 22/13 |
33 | 936.784 | |
34 | 965.171 | |
35 | 993.559 | |
36 | 1021.946 | |
37 | 1050.333 | 11/6 |
38 | 1078.721 | 28/15 |
39 | 1107.108 | |
40 | 1135.496 | 25/13, 27/14 |
41 | 1163.883 | |
42 | 1192.27 | |
43 | 1220.658 | |
44 | 1249.045 | 35/17 |
45 | 1277.432 | 23/11 |
46 | 1305.82 | |
47 | 1334.207 | |
48 | 1362.595 | 11/5 |
49 | 1390.982 | 29/13 |
50 | 1419.369 | 25/11, 34/15 |
51 | 1447.757 | 30/13 |
52 | 1476.144 | |
53 | 1504.532 | 31/13 |
54 | 1532.919 | 17/7 |
55 | 1561.306 | |
56 | 1589.694 | 5/2 |
57 | 1618.081 | 28/11 |
58 | 1646.469 | 31/12 |
59 | 1674.856 | 29/11 |
60 | 1703.243 | |
61 | 1731.631 | 19/7 |
62 | 1760.018 | 36/13 |
63 | 1788.405 | |
64 | 1816.793 | |
65 | 1845.18 | 29/10 |
66 | 1873.568 | |
67 | 1901.955 | 3/1 |
Harmonics
Harmonic | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | -7.7 | +0.0 | +12.9 | -4.3 | -7.7 | +9.3 | +5.2 | +0.0 | -12.1 | -6.8 | +12.9 |
Relative (%) | -27.2 | +0.0 | +45.5 | -15.3 | -27.2 | +32.7 | +18.3 | +0.0 | -42.6 | -23.8 | +45.5 | |
Steps (reduced) |
42 (42) |
67 (0) |
85 (18) |
98 (31) |
109 (42) |
119 (52) |
127 (60) |
134 (0) |
140 (6) |
146 (12) |
152 (18) |
Harmonic | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | -12.1 | +1.5 | -4.3 | -2.5 | +6.1 | -7.7 | +12.2 | +8.6 | +9.3 | +13.9 | -6.3 |
Relative (%) | -42.6 | +5.4 | -15.3 | -8.9 | +21.4 | -27.2 | +43.0 | +30.2 | +32.7 | +49.0 | -22.1 | |
Steps (reduced) |
156 (22) |
161 (27) |
165 (31) |
169 (35) |
173 (39) |
176 (42) |
180 (46) |
183 (49) |
186 (52) |
189 (55) |
191 (57) |