67edt

From Xenharmonic Wiki
Jump to navigation Jump to search
← 66edt67edt68edt →
Prime factorization 67 (prime)
Step size 28.3874¢ 
Octave 42\67edt (1192.27¢)
Consistency limit 2
Distinct consistency limit 2

67EDT is the equal division of the third harmonic into 67 parts of 28.3874 cents each, corresponding to 42.2723 edo. It is related to the regular temperament which tempers out 2100875/2097152 and |-36 45 -14 -1> in the 7-limit, which is supported by 296, 465, 761, and 1057 EDOs among others.

Related regular temperaments

296&465 temperament

7-limit

Commas: 2100875/2097152, |-36 45 -14 -1>

POTE generator: ~64/63 = 28.3825

Mapping: [<1 0 -3 6|, <0 67 225 -135|]

EDOs: 296, 465, 761, 1057

11-limit

Commas: 46656/46585, 2100875/2097152, 21437500/21434787

POTE generator: ~64/63 = 28.3824

Mapping: [<1 0 -3 6 1|, <0 67 225 -135 104|]

EDOs: 296, 465, 761, 1057

13-limit

Commas: 1575/1573, 46656/46585, 199927/199650, 216513/216320

POTE generator: ~64/63 = 28.3825

Mapping: [<1 0 -3 6 1 -2|, <0 67 225 -135 104 241|]

EDOs: 296, 465, 761, 1057

Intervals

Steps Cents Approximate Ratios
0 0 1/1
1 28.387
2 56.775 30/29, 31/30
3 85.162
4 113.55 31/29
5 141.937 13/12, 25/23
6 170.324 21/19
7 198.712 28/25
8 227.099 33/29
9 255.486 29/25, 36/31
10 283.874 33/28
11 312.261 6/5
12 340.649 28/23
13 369.036 21/17, 31/25
14 397.423 29/23, 34/27
15 425.811 23/18
16 454.198 13/10
17 482.586 33/25
18 510.973
19 539.36 15/11
20 567.748 25/18
21 596.135 31/22
22 624.523 33/23
23 652.91
24 681.297
25 709.685
26 738.072 23/15
27 766.459 14/9
28 794.847
29 823.234 29/18
30 851.622 18/11
31 880.009
32 908.396 22/13
33 936.784
34 965.171
35 993.559
36 1021.946
37 1050.333 11/6
38 1078.721 28/15
39 1107.108
40 1135.496 25/13, 27/14
41 1163.883
42 1192.27
43 1220.658
44 1249.045 35/17
45 1277.432 23/11
46 1305.82
47 1334.207
48 1362.595 11/5
49 1390.982 29/13
50 1419.369 25/11, 34/15
51 1447.757 30/13
52 1476.144
53 1504.532 31/13
54 1532.919 17/7
55 1561.306
56 1589.694 5/2
57 1618.081 28/11
58 1646.469 31/12
59 1674.856 29/11
60 1703.243
61 1731.631 19/7
62 1760.018 36/13
63 1788.405
64 1816.793
65 1845.18 29/10
66 1873.568
67 1901.955 3/1

Harmonics

Approximation of harmonics in 67edt
Harmonic 2 3 4 5 6 7 8 9 10 11 12
Error Absolute (¢) -7.7 +0.0 +12.9 -4.3 -7.7 +9.3 +5.2 +0.0 -12.1 -6.8 +12.9
Relative (%) -27.2 +0.0 +45.5 -15.3 -27.2 +32.7 +18.3 +0.0 -42.6 -23.8 +45.5
Steps
(reduced)
42
(42)
67
(0)
85
(18)
98
(31)
109
(42)
119
(52)
127
(60)
134
(0)
140
(6)
146
(12)
152
(18)
Approximation of harmonics in 67edt
Harmonic 13 14 15 16 17 18 19 20 21 22 23
Error Absolute (¢) -12.1 +1.5 -4.3 -2.5 +6.1 -7.7 +12.2 +8.6 +9.3 +13.9 -6.3
Relative (%) -42.6 +5.4 -15.3 -8.9 +21.4 -27.2 +43.0 +30.2 +32.7 +49.0 -22.1
Steps
(reduced)
156
(22)
161
(27)
165
(31)
169
(35)
173
(39)
176
(42)
180
(46)
183
(49)
186
(52)
189
(55)
191
(57)