67edt

From Xenharmonic Wiki
Jump to navigation Jump to search
← 66edt 67edt 68edt →
Prime factorization 67 (prime)
Step size 28.3874¢ 
Octave 42\67edt (1192.27¢)
Consistency limit 2
Distinct consistency limit 2

67EDT is the equal division of the third harmonic into 67 parts of 28.3874 cents each, corresponding to 42.2723 edo. It is related to the regular temperament which tempers out 2100875/2097152 and |-36 45 -14 -1> in the 7-limit, which is supported by 296, 465, 761, and 1057 EDOs among others.

Related regular temperaments

296&465 temperament

7-limit

Commas: 2100875/2097152, |-36 45 -14 -1>

POTE generator: ~64/63 = 28.3825

Mapping: [<1 0 -3 6|, <0 67 225 -135|]

EDOs: 296, 465, 761, 1057

11-limit

Commas: 46656/46585, 2100875/2097152, 21437500/21434787

POTE generator: ~64/63 = 28.3824

Mapping: [<1 0 -3 6 1|, <0 67 225 -135 104|]

EDOs: 296, 465, 761, 1057

13-limit

Commas: 1575/1573, 46656/46585, 199927/199650, 216513/216320

POTE generator: ~64/63 = 28.3825

Mapping: [<1 0 -3 6 1 -2|, <0 67 225 -135 104 241|]

EDOs: 296, 465, 761, 1057

Intervals

Steps Cents Approximate ratios
0 0 1/1
1 28.4
2 56.8 30/29, 31/30
3 85.2
4 113.5 31/29
5 141.9 13/12, 25/23
6 170.3 21/19
7 198.7 28/25
8 227.1 33/29
9 255.5 29/25, 36/31
10 283.9 33/28
11 312.3 6/5
12 340.6 28/23
13 369 21/17, 31/25
14 397.4 29/23, 34/27
15 425.8 23/18
16 454.2 13/10
17 482.6 33/25
18 511
19 539.4 15/11
20 567.7 25/18
21 596.1 31/22
22 624.5 33/23
23 652.9
24 681.3
25 709.7
26 738.1 23/15
27 766.5 14/9
28 794.8
29 823.2 29/18
30 851.6 18/11
31 880
32 908.4 22/13
33 936.8
34 965.2
35 993.6
36 1021.9
37 1050.3 11/6
38 1078.7 28/15
39 1107.1
40 1135.5 25/13, 27/14
41 1163.9
42 1192.3
43 1220.7
44 1249 35/17
45 1277.4 23/11
46 1305.8
47 1334.2
48 1362.6 11/5
49 1391 29/13
50 1419.4 25/11, 34/15
51 1447.8 30/13
52 1476.1
53 1504.5 31/13
54 1532.9 17/7
55 1561.3
56 1589.7 5/2
57 1618.1 28/11
58 1646.5 31/12
59 1674.9 29/11
60 1703.2
61 1731.6 19/7
62 1760 36/13
63 1788.4
64 1816.8
65 1845.2 29/10
66 1873.6
67 1902 3/1

Harmonics

Approximation of harmonics in 67edt
Harmonic 2 3 4 5 6 7 8 9 10 11 12
Error Absolute (¢) -7.7 +0.0 +12.9 -4.3 -7.7 +9.3 +5.2 +0.0 -12.1 -6.8 +12.9
Relative (%) -27.2 +0.0 +45.5 -15.3 -27.2 +32.7 +18.3 +0.0 -42.6 -23.8 +45.5
Steps
(reduced)
42
(42)
67
(0)
85
(18)
98
(31)
109
(42)
119
(52)
127
(60)
134
(0)
140
(6)
146
(12)
152
(18)
Approximation of harmonics in 67edt
Harmonic 13 14 15 16 17 18 19 20 21 22 23
Error Absolute (¢) -12.1 +1.5 -4.3 -2.5 +6.1 -7.7 +12.2 +8.6 +9.3 +13.9 -6.3
Relative (%) -42.6 +5.4 -15.3 -8.9 +21.4 -27.2 +43.0 +30.2 +32.7 +49.0 -22.1
Steps
(reduced)
156
(22)
161
(27)
165
(31)
169
(35)
173
(39)
176
(42)
180
(46)
183
(49)
186
(52)
189
(55)
191
(57)