761edo

From Xenharmonic Wiki
Jump to navigation Jump to search
← 760edo 761edo 762edo →
Prime factorization 761 (prime)
Step size 1.57687¢ 
Fifth 445\761 (701.708¢)
Semitones (A1:m2) 71:58 (112¢ : 91.46¢)
Consistency limit 9
Distinct consistency limit 9

761 equal divisions of the octave (abbreviated 761edo or 761ed2), also called 761-tone equal temperament (761tet) or 761 equal temperament (761et) when viewed under a regular temperament perspective, is the tuning system that divides the octave into 761 equal parts of about 1.58 ¢ each. Each step represents a frequency ratio of 21/761, or the 761st root of 2.

Theory

761edo is consistent to the 9-odd-limit. As an equal temperament, it tempers out 32805/32768 in the 5-limit; 420175/419904 and [3 13 -15 4 in the 7-limit. The equal temperament is strong in the 2.3.5.13.29.31 subgroup, tempering out 32805/32768, 21141/21125, 3627/3625, 140625/140608 and 45349632/45287125.

Odd harmonics

Approximation of odd harmonics in 761edo
Harmonic 3 5 7 9 11 13 15 17 19 21 23
Error Absolute (¢) -0.247 +0.020 -0.626 -0.493 +0.587 -0.055 -0.227 +0.695 +0.516 +0.704 -0.679
Relative (%) -15.6 +1.3 -39.7 -31.3 +37.3 -3.5 -14.4 +44.1 +32.7 +44.6 -43.1
Steps
(reduced)
1206
(445)
1767
(245)
2136
(614)
2412
(129)
2633
(350)
2816
(533)
2973
(690)
3111
(67)
3233
(189)
3343
(299)
3442
(398)

Subsets and supersets

761edo is the 135th prime edo.

Regular temperament properties

Subgroup Comma List Mapping Optimal
8ve Stretch (¢)
Tuning Error
Absolute (¢) Relative (%)
2.3 [-1206 761 [761 1206]] 0.0778 0.0778 4.93
2.3.5 32805/32768, [69 81 -85 [761 1206 1767]] 0.0490 0.0755 4.79
2.3.5.7 32805/32768, 420175/419904, [3 13 -15 4 [761 1206 1767 2136]] 0.0925 0.0998 6.33

Rank-2 temperaments

Table of rank-2 temperaments by generator
Periods
per 8ve
Generator* Cents* Associated
ratio*
Temperaments
1 316\761 498.292 4/3 Helmholtz

* Octave-reduced form, reduced to the first half-octave, and minimal form in parentheses if distinct