68edt
Jump to navigation
Jump to search
Prime factorization
22 × 17
Step size
27.9699¢
Octave
43\68edt (1202.71¢)
Consistency limit
5
Distinct consistency limit
5
← 67edt | 68edt | 69edt → |
Division of the third harmonic into 68 equal parts (68EDT) is related to 43 edo (meride tuning), but with the 3/1 rather than the 2/1 being just. The octave is about 2.7068 cents stretched and the step size is about 27.9699 cents. Unlike 43edo, it is only consistent up to the 6-integer-limit, with discrepancy for the 7th harmonic.
Lookalikes: 43edo, 100ed5, 111ed6, 25edf
Intervals
Steps | Cents | Approximate Ratios |
---|---|---|
0 | 0 | 1/1 |
1 | 27.97 | |
2 | 55.94 | 31/30, 32/31 |
3 | 83.91 | 22/21 |
4 | 111.88 | 16/15 |
5 | 139.85 | 13/12 |
6 | 167.82 | |
7 | 195.789 | 19/17 |
8 | 223.759 | 33/29 |
9 | 251.729 | 22/19, 37/32 |
10 | 279.699 | 27/23 |
11 | 307.669 | 31/26, 37/31 |
12 | 335.639 | 17/14 |
13 | 363.609 | 21/17, 37/30 |
14 | 391.579 | |
15 | 419.549 | 14/11 |
16 | 447.519 | 22/17, 35/27 |
17 | 475.489 | 29/22 |
18 | 503.459 | |
19 | 531.429 | 19/14 |
20 | 559.399 | 29/21 |
21 | 587.368 | |
22 | 615.338 | |
23 | 643.308 | |
24 | 671.278 | 28/19 |
25 | 699.248 | 3/2 |
26 | 727.218 | 35/23 |
27 | 755.188 | 17/11, 31/20 |
28 | 783.158 | 11/7 |
29 | 811.128 | 8/5 |
30 | 839.098 | 13/8 |
31 | 867.068 | 28/17 |
32 | 895.038 | |
33 | 923.008 | 29/17 |
34 | 950.978 | 26/15 |
35 | 978.947 | |
36 | 1006.917 | 34/19 |
37 | 1034.887 | |
38 | 1062.857 | 24/13, 37/20 |
39 | 1090.827 | 15/8 |
40 | 1118.797 | 21/11 |
41 | 1146.767 | 31/16, 33/17 |
42 | 1174.737 | |
43 | 1202.707 | 2/1 |
44 | 1230.677 | |
45 | 1258.647 | 29/14, 31/15 |
46 | 1286.617 | |
47 | 1314.587 | 32/15 |
48 | 1342.556 | |
49 | 1370.526 | |
50 | 1398.496 | |
51 | 1426.466 | |
52 | 1454.436 | 37/16 |
53 | 1482.406 | 33/14 |
54 | 1510.376 | |
55 | 1538.346 | 17/7 |
56 | 1566.316 | 37/15 |
57 | 1594.286 | |
58 | 1622.256 | 23/9 |
59 | 1650.226 | |
60 | 1678.196 | 29/11 |
61 | 1706.166 | |
62 | 1734.135 | |
63 | 1762.105 | 36/13 |
64 | 1790.075 | |
65 | 1818.045 | |
66 | 1846.015 | |
67 | 1873.985 | |
68 | 1901.955 | 3/1 |
Harmonics
Harmonic | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | +2.7 | +0.0 | +5.4 | +10.7 | +2.7 | -12.4 | +8.1 | +0.0 | +13.4 | -11.8 | +5.4 |
Relative (%) | +9.7 | +0.0 | +19.4 | +38.2 | +9.7 | -44.5 | +29.0 | +0.0 | +47.9 | -42.1 | +19.4 | |
Steps (reduced) |
43 (43) |
68 (0) |
86 (18) |
100 (32) |
111 (43) |
120 (52) |
129 (61) |
136 (0) |
143 (7) |
148 (12) |
154 (18) |
Harmonic | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | +6.7 | -9.7 | +10.7 | +10.8 | -10.2 | +2.7 | -7.0 | -11.9 | -12.4 | -9.1 | -2.1 |
Relative (%) | +23.9 | -34.8 | +38.2 | +38.7 | -36.5 | +9.7 | -25.0 | -42.5 | -44.5 | -32.4 | -7.5 | |
Steps (reduced) |
159 (23) |
163 (27) |
168 (32) |
172 (36) |
175 (39) |
179 (43) |
182 (46) |
185 (49) |
188 (52) |
191 (55) |
194 (58) |