147ed12

From Xenharmonic Wiki
Jump to navigation Jump to search
← 146ed12 147ed12 148ed12 →
Prime factorization 3 × 72
Step size 29.265 ¢ 
Octave 41\147ed12 (1199.87 ¢)
(convergent)
Twelfth 65\147ed12 (1902.23 ¢)
(semiconvergent)
Consistency limit 16
Distinct consistency limit 10

147 equal divisions of the 12th harmonic (abbreviated 147ed12) is a nonoctave tuning system that divides the interval of 12/1 into 147 equal parts of about 29.3 ¢ each. Each step represents a frequency ratio of 121/147, or the 147th root of 12.

Theory

147ed12 is almost identical to 41edo, but with the 12th harmonic rather than the octave being just. The octave is about 0.135 ¢ compressed. Like 41edo, 147ed12 is consistent to the 16-integer-limit.

Harmonics

Approximation of harmonics in 147ed12
Harmonic 2 3 4 5 6 7 8 9 10 11 12
Error Absolute (¢) -0.1 +0.3 -0.3 -6.1 +0.1 -3.4 -0.4 +0.5 -6.3 +4.3 +0.0
Relative (%) -0.5 +0.9 -0.9 -21.0 +0.5 -11.5 -1.4 +1.8 -21.4 +14.7 +0.0
Steps
(reduced)
41
(41)
65
(65)
82
(82)
95
(95)
106
(106)
115
(115)
123
(123)
130
(130)
136
(136)
142
(142)
147
(0)
Approximation of harmonics in 147ed12 (continued)
Harmonic 13 14 15 16 17 18 19 20 21 22 23 24
Error Absolute (¢) +7.8 -3.5 -5.9 -0.5 +11.6 +0.4 -5.4 -6.4 -3.1 +4.2 -14.2 -0.1
Relative (%) +26.5 -11.9 -20.1 -1.8 +39.5 +1.4 -18.5 -21.9 -10.5 +14.3 -48.7 -0.5
Steps
(reduced)
152
(5)
156
(9)
160
(13)
164
(17)
168
(21)
171
(24)
174
(27)
177
(30)
180
(33)
183
(36)
185
(38)
188
(41)

See also

  • 24edf – relative edf
  • 41edo – relative edo
  • 65edt – relative edt
  • 95ed5 – relative ed5
  • 106ed6 – relative ed6
  • 361ed448 – close to the zeta-optimized tuning for 41edo