385edo

From Xenharmonic Wiki
Jump to navigation Jump to search
← 384edo385edo386edo →
Prime factorization 5 × 7 × 11
Step size 3.11688¢
Fifth 225\385 (701.299¢) (→45\77)
Semitones (A1:m2) 35:30 (109.1¢ : 93.51¢)
Consistency limit 7
Distinct consistency limit 7

385 equal divisions of the octave (385edo), or 385-tone equal temperament (385tet), 385 equal temperament (385et) when viewed from a regular temperament perspective, is the tuning system that divides the octave into 385 equal parts of about 3.12 ¢ each.

Theory

385et tempers out following commas:

7-limit commas: 589824/588245, 134217728/133984375, 703125/702464, 1959552/1953125, 5250987/5242880, 200120949/200000000

11-limit commas: 1073741824/1071794405, 161280/161051, 25165824/25109315, 234375/234256, 2097152/2096325, 1366875/1362944, 166698/166375, 496125/495616, 151263/151250, 104857600/104825259, 540/539, 172032/171875, 369140625/369098752, 825000/823543, 180224/180075, 8019/8000, 160083/160000, 539055/537824, 766656/765625, 202397184/201768035, 43923/43904, 20614528/20588575, 39135393/39062500, 781258401/781250000

Prime harmonics

Approximation of prime harmonics in 385edo
Harmonic 2 3 5 7 11 13 17 19 23 29 31
Error absolute (¢) +0.00 -0.66 +0.18 +0.52 +0.37 +1.03 +1.02 -1.41 +1.34 -1.01 -1.14
relative (%) +0 -21 +6 +17 +12 +33 +33 -45 +43 -32 -37
Steps
(reduced)
385
(0)
610
(225)
894
(124)
1081
(311)
1332
(177)
1425
(270)
1574
(34)
1635
(95)
1742
(202)
1870
(330)
1907
(367)

Subsets and supersets

385 factors into 5 x 7 x 11, with subset edos 5, 7, 11, 35, 55, and 77.

Regular temperament properties

Subgroup Comma List Mapping Optimal
8ve Stretch (¢)
Tuning Error
Absolute (¢) Relative (%)
2.3 [-122 77 385 610] +0.2070 0.2071 6.64
2.3.5 [-28 25 -5, [38 -2 -15 385 610 894] +0.1122 0.2158 6.92
2.3.5.7 19683/19600, 589824/588245, 703125/702464 385 610 894 1081] +0.0374 0.2274 7.30
2.3.5.7.11 540/539, 8019/8000, 496125/495616, 172032/171875 385 610 894 1081 1332] +0.0085 0.2114 6.78
2.3.5.7.11.13 540/539, 1716/1715, 8019/8000, 4096/4095, 81675/81536 385 610 894 1081 1332 1425] -0.0394 0.2207 7.08
2.3.5.7.11.13.17 540/539, 936/935, 1377/1375, 1716/1715, 4096/4095, 13365/13328 385 610 894 1081 1332 1425 1574] -0.0693 0.2171 6.97

Rank-2 temperaments

Table of rank-2 temperaments by generator
Periods
per 8ve
Generator
(Reduced)
Cents
(Reduced)
Associated
Ratio
Temperaments
1 62\385 193.247 4096/3645 Luna
1 162/385 504.935 4/3 Countermeantone
5 160\385
(6\385)
498.701
(18.701)
4/3
(81/80)
Pental (5-limit)