718edo

From Xenharmonic Wiki
Jump to navigation Jump to search
← 717edo718edo719edo →
Prime factorization 2 × 359
Step size 1.67131¢ 
Fifth 420\718 (701.95¢) (→210\359)
Semitones (A1:m2) 68:54 (113.6¢ : 90.25¢)
Consistency limit 23
Distinct consistency limit 23

718 equal divisions of the octave (abbreviated 718edo or 718ed2), also called 718-tone equal temperament (718tet) or 718 equal temperament (718et) when viewed under a regular temperament perspective, is the tuning system that divides the octave into 718 equal parts of about 1.67 ¢ each. Each step represents a frequency ratio of 21/718, or the 718th root of 2.

Theory

718edo is distinctly consistent in the 23-odd-limit, and does well enough in the 31-limit. It is closely related to 359edo, but the mapping differs for 5, 13, 17 and 31.

As does 359et, 718et tempers out the 359-comma in the 3-limit, rendering a very accurate harmonic 3. In the 5-limit it tempers out the gammic comma, [-29 -11 20, and the monzisma, [54 -37 2. In the 7-limit it tempers out 4375/4374; in the 11-limit 3025/3024, 9801/9800 and 131072/130977; in the 13-limit 1716/1715, 2080/2079, 4096/4095, 4225/4224, 6656/6655 and 10648/10647; in the 17-limit 1275/1274, 2025/2023; in the 19-limit 2432/2431, 3250/3249, 4200/4199 and 5985/5984; and in the 23-limit 2024/2023, 2025/2024, 2185/2184, 3060/3059. It supports gammic, monzismic and abigail.

Prime harmonics

Approximation of prime harmonics in 718edo
Harmonic 2 3 5 7 11 13 17 19 23 29 31
Error Absolute (¢) +0.000 -0.005 -0.241 +0.533 +0.214 +0.141 +0.337 -0.020 +0.138 -0.051 -0.189
Relative (%) +0.0 -0.3 -14.4 +31.9 +12.8 +8.4 +20.2 -1.2 +8.3 -3.0 -11.3
Steps
(reduced)
718
(0)
1138
(420)
1667
(231)
2016
(580)
2484
(330)
2657
(503)
2935
(63)
3050
(178)
3248
(376)
3488
(616)
3557
(685)

Subsets and supersets

Since 718 factors into 2 × 359, 718edo contains 2edo and 359edo as subsets.

Regular temperament properties

Subgroup Comma List Mapping Optimal
8ve Stretch (¢)
Tuning Error
Absolute (¢) Relative (%)
2.3.5 [-29 -11 20, [54 -37 2 [718 1138 1667]] +0.0357 0.0482 2.89
2.3.5.7 4375/4374, 40500000/40353607, [31 -6 -2 -6 [718 1138 1667 2016]] -0.0207 0.1063 6.36
2.3.5.7.11 3025/3024, 4375/4374, 131072/130977, 40500000/40353607 [718 1138 1667 2016 2484]] -0.0290 0.0965 5.77
2.3.5.7.11.13 1716/1715, 2080/2079, 3025/3024, 4096/4095, 7031250/7014007 [718 1138 1667 2016 2484 2657]] -0.0305 0.0881 5.27
2.3.5.7.11.13.17 1275/1274, 1716/1715, 2025/2023, 2080/2079, 3025/3024, 4096/4095 [718 1138 1667 2016 2484 2657 2935]] -0.0379 0.0836 5.00
2.3.5.7.11.13.17.19 1275/1274, 1716/1715, 2025/2023, 2080/2079, 2432/2431, 3025/3024, 3250/3249 [718 1138 1667 2016 2484 2657 2935 3050]] -0.0326 0.0795 4.76
2.3.5.7.11.13.17.19.23 1275/1274, 1716/1715, 2024/2023, 2025/2023, 2080/2079, 2185/2184, 2432/2431, 3025/3024 [718 1138 1667 2016 2484 2657 2935 3050 3248]] -0.0323 0.0749 4.48
  • 718et has a lower absolute error in the 23-limit than any previous equal temperaments, past 581 and followed by 742i.

Rank-2 temperaments

Table of rank-2 temperaments by generator
Periods
per 8ve
Generator* Cents* Associated
Ratio*
Temperaments
1 21\718 35.10 234375/229376 Gammic
1 249\718 249.03 [-27 11 3 1 Monzismic
2 125\718 208.91 44/39 Abigail

* octave-reduced form, reduced to the first half-octave, and minimal form in parentheses if it is distinct