41edt

From Xenharmonic Wiki
Jump to navigation Jump to search
← 40edt 41edt 42edt →
Prime factorization 41 (prime)
Step size 46.3891¢ 
Octave 26\41edt (1206.12¢)
Consistency limit 10
Distinct consistency limit 8

Division of the third harmonic into 41 equal parts (41edt) is related to 26 edo, but with the 3/1 rather than the 2/1 being just. The octave is about 6.1178 cents stretched and the step size is about 46.3891 cents. Unlike 26edo, it is only consistent up to the 10-integer-limit, with discrepancy for the 11th harmonic.

41edt is related to the regular temperament which tempers out 823543/820125 and 2199023255552/2197176384375 in the 7-limit, which is supported by 181, 207, 388, 569, and 595 EDOs.

Intervals

Steps Cents Approximate ratios
0 0 1/1
1 46.389
2 92.778 18/17, 19/18, 20/19
3 139.167 13/12, 25/23, 27/25
4 185.557 10/9, 19/17, 29/26
5 231.946 8/7
6 278.335 20/17, 27/23
7 324.724 23/19, 29/24
8 371.113 21/17, 26/21
9 417.502 23/18
10 463.891 17/13, 21/16, 30/23
11 510.281
12 556.67 18/13, 29/21
13 603.059 17/12, 24/17, 27/19
14 649.448 29/20
15 695.837 3/2
16 742.226 20/13, 23/15, 26/17
17 788.615 19/12, 30/19
18 835.005 13/8, 21/13
19 881.394 5/3
20 927.783 12/7, 29/17
21 974.172 7/4
22 1020.561 9/5
23 1066.95 13/7, 24/13
24 1113.34 19/10
25 1159.729
26 1206.118 2/1
27 1252.507
28 1298.896 17/8, 19/9
29 1345.285 13/6
30 1391.674 29/13
31 1438.064 16/7, 23/10
32 1484.453
33 1530.842 17/7, 29/12
34 1577.231
35 1623.62 23/9
36 1670.009 21/8
37 1716.398 27/10
38 1762.788 25/9
39 1809.177 17/6
40 1855.566
41 1901.955 3/1

Harmonics

Approximation of harmonics in 41edt
Harmonic 2 3 4 5 6 7 8 9 10 11 12
Error Absolute (¢) +6.1 +0.0 +12.2 -3.0 +6.1 +17.6 +18.4 +0.0 +3.2 -22.7 +12.2
Relative (%) +13.2 +0.0 +26.4 -6.4 +13.2 +37.9 +39.6 +0.0 +6.8 -48.9 +26.4
Steps
(reduced)
26
(26)
41
(0)
52
(11)
60
(19)
67
(26)
73
(32)
78
(37)
82
(0)
86
(4)
89
(7)
93
(11)
Approximation of harmonics in 41edt
Harmonic 13 14 15 16 17 18 19 20 21 22 23
Error Absolute (¢) +12.8 -22.7 -3.0 -21.9 +12.3 +6.1 +5.3 +9.3 +17.6 -16.6 -0.7
Relative (%) +27.7 -48.9 -6.4 -47.2 +26.5 +13.2 +11.4 +20.0 +37.9 -35.7 -1.6
Steps
(reduced)
96
(14)
98
(16)
101
(19)
103
(21)
106
(24)
108
(26)
110
(28)
112
(30)
114
(32)
115
(33)
117
(35)

Related regular temperaments

181&207 temperament

5-limit

Comma: |287 -121 -41>

POTE generator: ~|140 -59 -20> = 46.3927

Mapping: [<1 0 7|, <0 41 -121|]

EDOs: 181, 207, 388, 569, 595, 957, 1345

Badness: 17.5651

7-limit

Commas: 823543/820125, 2199023255552/2197176384375

POTE generator: ~131072/127575 = 46.3932

Mapping: [<1 0 7 3|, <0 41 -121 -5|]

EDOs: 181, 207, 388, 569, 595

Badness: 0.6461

11-limit

Commas: 42592/42525, 43923/43904, 184877/184320

POTE generator: ~352/343 = 46.3934

Mapping: [<1 0 7 3 4|, <0 41 -121 -5 -14|]

EDOs: 181, 207, 388, 569, 595

Badness: 0.1362

13-limit

Commas: 847/845, 4096/4095, 4459/4455, 17303/17280

POTE generator: ~352/343 = 46.3921

Mapping: [<1 0 7 3 4 2|, <0 41 -121 -5 -14 44|]

EDOs: 181, 207, 388, 569, 595

Badness: 0.0707

17-limit

Commas: 833/832, 847/845, 1089/1088, 2058/2057, 2431/2430

POTE generator: ~187/182 = 46.3918

Mapping: [<1 0 7 3 4 2 2|, <0 41 -121 -5 -14 44 54|]

EDOs: 181, 207, 388, 569, 595

Badness: 0.0411

26&388 temperament

5-limit

Comma: |-41 146 -82>

POTE generator: ~|-16 57 -32> = 46.3883

Mapping: [<2 0 -1|, <0 41 73|]

EDOs: 26, 388, 414, 802, 1190, 1578, 1966, 2354

Badness: 3.9285

7-limit

Commas: 4375/4374, |-62 -1 2 21>

POTE generator: ~17294403/16777216 = 46.3835

Mapping: [<2 0 -1 6|, <0 41 73 -5|]

EDOs: 26, 362, 388, 414, 802

Badness: 0.4543

11-limit

Commas: 3025/3024, 4375/4374, 5931980229/5905580032

POTE generator: ~352/343 = 46.3827

Mapping: [<2 0 -1 6 8|, <0 41 73 -5 -14|]

EDOs: 26, 362, 388, 414, 802

Badness: 0.1020

13-limit

Commas: 2200/2197, 3025/3024, 4375/4374, 50421/50336

POTE generator: ~352/343 = 46.3825

Mapping: [<2 0 -1 6 8 4|, <0 41 73 -5 -14 44|]

EDOs: 26, 362, 388, 414, 802

Badness: 0.0595

17-limit

Commas: 833/832, 1089/1088, 1225/1224, 1701/1700, 2200/2197

POTE generator: ~187/182 = 46.3824

Mapping: [<2 0 -1 6 8 4 4|, <0 41 73 -5 -14 44 54|]

EDOs: 26, 362, 388, 414, 802

Badness: 0.0326