41edt
← 40edt | 41edt | 42edt → |
Division of the third harmonic into 41 equal parts (41edt) is related to 26 edo, but with the 3/1 rather than the 2/1 being just. The octave is about 6.1178 cents stretched and the step size is about 46.3891 cents. Unlike 26edo, it is only consistent up to the 10-integer-limit, with discrepancy for the 11th harmonic.
41edt is related to the regular temperament which tempers out 823543/820125 and 2199023255552/2197176384375 in the 7-limit, which is supported by 181, 207, 388, 569, and 595 EDOs.
Intervals
Steps | Cents | Approximate Ratios |
---|---|---|
0 | 0 | 1/1 |
1 | 46.389 | |
2 | 92.778 | 18/17, 19/18, 20/19 |
3 | 139.167 | 13/12, 25/23, 27/25 |
4 | 185.557 | 10/9, 19/17, 29/26 |
5 | 231.946 | 8/7 |
6 | 278.335 | 20/17, 27/23 |
7 | 324.724 | 23/19, 29/24 |
8 | 371.113 | 21/17, 26/21 |
9 | 417.502 | 23/18 |
10 | 463.891 | 17/13, 21/16, 30/23 |
11 | 510.281 | |
12 | 556.67 | 18/13, 29/21 |
13 | 603.059 | 17/12, 24/17, 27/19 |
14 | 649.448 | 29/20 |
15 | 695.837 | 3/2 |
16 | 742.226 | 20/13, 23/15, 26/17 |
17 | 788.615 | 19/12, 30/19 |
18 | 835.005 | 13/8, 21/13 |
19 | 881.394 | 5/3 |
20 | 927.783 | 12/7, 29/17 |
21 | 974.172 | 7/4 |
22 | 1020.561 | 9/5 |
23 | 1066.95 | 13/7, 24/13 |
24 | 1113.34 | 19/10 |
25 | 1159.729 | |
26 | 1206.118 | 2/1 |
27 | 1252.507 | |
28 | 1298.896 | 17/8, 19/9 |
29 | 1345.285 | 13/6 |
30 | 1391.674 | 29/13 |
31 | 1438.064 | 16/7, 23/10 |
32 | 1484.453 | |
33 | 1530.842 | 17/7, 29/12 |
34 | 1577.231 | |
35 | 1623.62 | 23/9 |
36 | 1670.009 | 21/8 |
37 | 1716.398 | 27/10 |
38 | 1762.788 | 25/9 |
39 | 1809.177 | 17/6 |
40 | 1855.566 | |
41 | 1901.955 | 3/1 |
Harmonics
Harmonic | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | +6.1 | +0.0 | +12.2 | -3.0 | +6.1 | +17.6 | +18.4 | +0.0 | +3.2 | -22.7 | +12.2 |
Relative (%) | +13.2 | +0.0 | +26.4 | -6.4 | +13.2 | +37.9 | +39.6 | +0.0 | +6.8 | -48.9 | +26.4 | |
Steps (reduced) |
26 (26) |
41 (0) |
52 (11) |
60 (19) |
67 (26) |
73 (32) |
78 (37) |
82 (0) |
86 (4) |
89 (7) |
93 (11) |
Harmonic | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | +12.8 | -22.7 | -3.0 | -21.9 | +12.3 | +6.1 | +5.3 | +9.3 | +17.6 | -16.6 | -0.7 |
Relative (%) | +27.7 | -48.9 | -6.4 | -47.2 | +26.5 | +13.2 | +11.4 | +20.0 | +37.9 | -35.7 | -1.6 | |
Steps (reduced) |
96 (14) |
98 (16) |
101 (19) |
103 (21) |
106 (24) |
108 (26) |
110 (28) |
112 (30) |
114 (32) |
115 (33) |
117 (35) |
Related regular temperaments
181&207 temperament
5-limit
Comma: |287 -121 -41>
POTE generator: ~|140 -59 -20> = 46.3927
Mapping: [<1 0 7|, <0 41 -121|]
EDOs: 181, 207, 388, 569, 595, 957, 1345
Badness: 17.5651
7-limit
Commas: 823543/820125, 2199023255552/2197176384375
POTE generator: ~131072/127575 = 46.3932
Mapping: [<1 0 7 3|, <0 41 -121 -5|]
Badness: 0.6461
11-limit
Commas: 42592/42525, 43923/43904, 184877/184320
POTE generator: ~352/343 = 46.3934
Mapping: [<1 0 7 3 4|, <0 41 -121 -5 -14|]
Badness: 0.1362
13-limit
Commas: 847/845, 4096/4095, 4459/4455, 17303/17280
POTE generator: ~352/343 = 46.3921
Mapping: [<1 0 7 3 4 2|, <0 41 -121 -5 -14 44|]
Badness: 0.0707
17-limit
Commas: 833/832, 847/845, 1089/1088, 2058/2057, 2431/2430
POTE generator: ~187/182 = 46.3918
Mapping: [<1 0 7 3 4 2 2|, <0 41 -121 -5 -14 44 54|]
Badness: 0.0411
26&388 temperament
5-limit
Comma: |-41 146 -82>
POTE generator: ~|-16 57 -32> = 46.3883
Mapping: [<2 0 -1|, <0 41 73|]
EDOs: 26, 388, 414, 802, 1190, 1578, 1966, 2354
Badness: 3.9285
7-limit
Commas: 4375/4374, |-62 -1 2 21>
POTE generator: ~17294403/16777216 = 46.3835
Mapping: [<2 0 -1 6|, <0 41 73 -5|]
Badness: 0.4543
11-limit
Commas: 3025/3024, 4375/4374, 5931980229/5905580032
POTE generator: ~352/343 = 46.3827
Mapping: [<2 0 -1 6 8|, <0 41 73 -5 -14|]
Badness: 0.1020
13-limit
Commas: 2200/2197, 3025/3024, 4375/4374, 50421/50336
POTE generator: ~352/343 = 46.3825
Mapping: [<2 0 -1 6 8 4|, <0 41 73 -5 -14 44|]
Badness: 0.0595
17-limit
Commas: 833/832, 1089/1088, 1225/1224, 1701/1700, 2200/2197
POTE generator: ~187/182 = 46.3824
Mapping: [<2 0 -1 6 8 4 4|, <0 41 73 -5 -14 44 54|]
Badness: 0.0326