9ed9/8

From Xenharmonic Wiki
Jump to navigation Jump to search
← 8ed9/8 9ed9/8 10ed9/8 →
Prime factorization 32
Step size 22.6567 ¢ 
Octave 53\9ed9/8 (1200.8 ¢)
(convergent)
Twelfth 84\9ed9/8 (1903.16 ¢) (→ 28\3ed9/8)
Consistency limit 10
Distinct consistency limit 10

9 equal divisions of 9/8 (abbreviated 9ed9/8) is a nonoctave tuning system that divides the interval of 9/8 into 9 equal parts of about 22.7 ¢ each. Each step represents a frequency ratio of (9/8)1/9, or the 9th root of 9/8.

Theory

9ed9/8 corresponds to 52.9645…edo, which is closely related to 53edo but with the whole tone instead of the octave tuned pure. Like 53edo, 9ed9/8 is consistent to the 10-integer-limit, but it has a sharp tendency, with all the harmonics within 1 to 16 but 11 tuned sharp.

Harmonics

Approximation of harmonics in 9ed9/8
Harmonic 2 3 4 5 6 7 8 9 10 11 12
Error Absolute (¢) +0.80 +1.21 +1.61 +0.46 +2.01 +7.02 +2.41 +2.41 +1.26 -5.15 +2.81
Relative (%) +3.5 +5.3 +7.1 +2.0 +8.9 +31.0 +10.6 +10.6 +5.6 -22.7 +12.4
Steps
(reduced)
53
(8)
84
(3)
106
(7)
123
(6)
137
(2)
149
(5)
159
(6)
168
(6)
176
(5)
183
(3)
190
(1)
Approximation of harmonics in 9ed9/8 (continued)
Harmonic 13 14 15 16 17 18 19 20 21 22 23 24
Error Absolute (¢) +0.18 +7.82 +1.66 +3.21 -11.12 +3.21 +0.24 +2.06 +8.22 -4.34 +9.33 +3.62
Relative (%) +0.8 +34.5 +7.3 +14.2 -49.1 +14.2 +1.0 +9.1 +36.3 -19.2 +41.2 +16.0
Steps
(reduced)
196
(7)
202
(4)
207
(0)
212
(5)
216
(0)
221
(5)
225
(0)
229
(4)
233
(8)
236
(2)
240
(6)
243
(0)

Subsets and supersets

9ed9/8 is the first odd composite ed9/8, containing 3ed9/8 as a subset.

Intervals

# Cents Ratio
0 0.0 1/1
1 22.7 (9/8)1/9
2 45.3 (9/8)2/9
3 68.0 (9/8)1/3
4 90.6 (9/8)4/9
5 113.3 (9/8)5/9
6 135.9 (9/8)2/3
7 158.6 (9/8)7/9
8 181.3 (9/8)8/9
9 203.9 9/8
10 226.6 (9/8)10/9
11 249.2 (9/8)11/9
12 271.9 (9/8)4/3
13 294.5 (9/8)13/9
14 317.2 (9/8)14/9
15 339.9 (9/8)5/3
16 362.5 (9/8)16/9
17 385.2 (9/8)17/9
18 407.8 (9/8)2 = 81/64
19 430.5 (9/8)19/9
20 453.1 (9/8)20/9
21 475.8 (9/8)7/3
22 498.4 (9/8)22/9
23 521.1 (9/8)23/9
24 543.8 (9/8)8/3
25 566.4 (9/8)25/9
26 589.1 (9/8)26/9
27 611.7 (9/8)3 = 729/512
28 634.4 (9/8)28/9
29 657.0 (9/8)29/9
30 679.7 (9/8)10/3
31 702.4 (9/8)31/9
32 725.0 (9/8)32/9
33 747.7 (9/8)11/3
34 770.3 (9/8)34/9
35 792.0 (9/8)35/9
36 815.6 (9/8)4 = 6561/4096
37 838.3 (9/8)37/9
38 861.0 (9/8)38/9
39 883.6 (9/8)13/3
40 906.3 (9/8)40/9
41 928.9 (9/8)41/9
42 951.6 (9/8)14/3
43 974.2 (9/8)43/9
44 996.9 (9/8)44/9
45 1019.6 (9/8)5 = 59049/32768
46 1042.2 (9/8)46/9
47 1064.9 (9/8)47/9
48 1087.5 (9/8)16/3
49 1110.2 (9/8)49/9
50 1132.8 (9/8)50/9
51 1155.5 (9/8)17/3
52 1178.1 (9/8)52/9
53 1200.8 (9/8)53/9
54 1223.5 (9/8)6 = 531441/262144

See also