9ed9/8

From Xenharmonic Wiki
Jump to: navigation, search

9ED9/8 is the equal division of the Pythagorean whole tone into nine parts of 22.6567 cents each, corresponding to 52.9645 edo. This tuning is used in Ottoman classical music theory, in which ninth root of the 9/8 whole tone is treated as the minimum interval.

Intervals

degree cents value ratio
0 0.0000 1/1
1 22.6567 (9/8)1/9
2 45.3133 (9/8)2/9
3 67.9700 (9/8)1/3
4 90.6267 (9/8)4/9
5 113.2833 (9/8)5/9
6 135.9400 (9/8)2/3
7 158.5967 (9/8)7/9
8 181.2533 (9/8)8/9
9 203.9100 9/8
10 226.5667 (9/8)10/9
11 249.2233 (9/8)11/9
12 271.8800 (9/8)4/3
13 294.5367 (9/8)13/9
14 317.1933 (9/8)14/9
15 339.8500 (9/8)5/3
16 362.5067 (9/8)16/9
17 385.1633 (9/8)17/9
18 407.8200 (9/8)2 = 81/64
19 430.4767 (9/8)19/9
20 453.1333 (9/8)20/9
21 475.7900 (9/8)7/3
22 498.4467 (9/8)22/9
23 521.1033 (9/8)23/9
24 543.7600 (9/8)8/3
25 566.4167 (9/8)25/9
26 589.0733 (9/8)26/9
27 611.7300 (9/8)3 = 729/512
28 634.3867 (9/8)28/9
29 657.0433 (9/8)29/9
30 679.7000 (9/8)10/3
31 702.3567 (9/8)31/9
32 725.0133 (9/8)32/9
33 747.6700 (9/8)11/3
34 770.3267 (9/8)34/9
35 792.9833 (9/8)35/9
36 815.6400 (9/8)4 = 6561/4096
37 838.2967 (9/8)37/9
38 860.9533 (9/8)38/9
39 883.6100 (9/8)13/3
40 906.2667 (9/8)40/9
41 928.9233 (9/8)41/9
42 951.5800 (9/8)14/3
43 974.2367 (9/8)43/9
44 996.8933 (9/8)44/9
45 1019.5500 (9/8)5 = 59049/32768
46 1042.2067 (9/8)46/9
47 1064.8633 (9/8)47/9
48 1087.5200 (9/8)16/3
49 1110.1767 (9/8)49/9
50 1132.8333 (9/8)50/9
51 1155.4900 (9/8)17/3
52 1178.1467 (9/8)52/9
53 1200.8033 (9/8)53/9
54 1223.4600 (9/8)6 = 531441/262144

See also