137ed6

From Xenharmonic Wiki
Jump to navigation Jump to search
← 136ed6 137ed6 138ed6 →
Prime factorization 137 (prime)
Step size 22.642¢ 
Octave 53\137ed6 (1200.03¢)
(convergent)
Twelfth 84\137ed6 (1901.93¢)
(convergent)
Consistency limit 10
Distinct consistency limit 10

Division of the sixth harmonic into 137 equal parts (137ED6) is practically identical to 53edo, but with the 6/1 rather than the 2/1 being just. The octave is about 0.03 cents stretched and the step size is about 22.642 cents.

Harmonics

Approximation of prime harmonics in 137ed6
Harmonic 2 3 5 7 11 13 17 19 23 29 31
Error Absolute (¢) +0.03 -0.03 -1.35 +4.83 -7.83 -2.69 +8.36 -3.06 +5.81 -10.58 +9.81
Relative (%) +0.1 -0.1 -5.9 +21.3 -34.6 -11.9 +36.9 -13.5 +25.6 -46.7 +43.3
Steps
(reduced)
53
(53)
84
(84)
123
(123)
149
(12)
183
(46)
196
(59)
217
(80)
225
(88)
240
(103)
257
(120)
263
(126)
Approximation of prime harmonics in 137ed6
Harmonic 37 41 43 47 53 59 61 67 71 73 79
Error Absolute (¢) -2.15 +1.27 +9.38 -8.76 +9.67 +5.13 -7.29 -11.22 +1.60 -1.21 -2.11
Relative (%) -9.5 +5.6 +41.4 -38.7 +42.7 +22.7 -32.2 -49.6 +7.1 -5.3 -9.3
Steps
(reduced)
276
(2)
284
(10)
288
(14)
294
(20)
304
(30)
312
(38)
314
(40)
321
(47)
326
(52)
328
(54)
334
(60)


Icon-Stub.png This page is a stub. You can help the Xenharmonic Wiki by expanding it.