137ed6
Jump to navigation
Jump to search
Prime factorization
137 (prime)
Step size
22.642¢
Octave
53\137ed6 (1200.03¢)
(convergent)
Twelfth
84\137ed6 (1901.93¢)
(convergent)
Consistency limit
10
Distinct consistency limit
10
← 136ed6 | 137ed6 | 138ed6 → |
(convergent)
(convergent)
Division of the sixth harmonic into 137 equal parts (137ED6) is practically identical to 53edo, but with the 6/1 rather than the 2/1 being just. The octave is about 0.03 cents stretched and the step size is about 22.642 cents.
Harmonics
Harmonic | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | +0.03 | -0.03 | -1.35 | +4.83 | -7.83 | -2.69 | +8.36 | -3.06 | +5.81 | -10.58 | +9.81 |
Relative (%) | +0.1 | -0.1 | -5.9 | +21.3 | -34.6 | -11.9 | +36.9 | -13.5 | +25.6 | -46.7 | +43.3 | |
Steps (reduced) |
53 (53) |
84 (84) |
123 (123) |
149 (12) |
183 (46) |
196 (59) |
217 (80) |
225 (88) |
240 (103) |
257 (120) |
263 (126) |
Harmonic | 37 | 41 | 43 | 47 | 53 | 59 | 61 | 67 | 71 | 73 | 79 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | -2.15 | +1.27 | +9.38 | -8.76 | +9.67 | +5.13 | -7.29 | -11.22 | +1.60 | -1.21 | -2.11 |
Relative (%) | -9.5 | +5.6 | +41.4 | -38.7 | +42.7 | +22.7 | -32.2 | -49.6 | +7.1 | -5.3 | -9.3 | |
Steps (reduced) |
276 (2) |
284 (10) |
288 (14) |
294 (20) |
304 (30) |
312 (38) |
314 (40) |
321 (47) |
326 (52) |
328 (54) |
334 (60) |
This page is a stub. You can help the Xenharmonic Wiki by expanding it. |