46edt
Jump to navigation
Jump to search
Prime factorization
2 × 23
Step size
41.3468¢
Octave
29\46edt (1199.06¢)
(semiconvergent)
Consistency limit
16
Distinct consistency limit
5
← 45edt | 46edt | 47edt → |
(semiconvergent)
Division of the third harmonic into 46 equal parts (46EDT) is related to 29edo, but with the 3/1 rather than the 2/1 being just. The octave is compressed by about 0.9414 cents and the step size is about 41.3468 cents. It is consistent to the 16-integer-limit.
Lookalikes: 29edo, 75ed6, 17edf
Intervals
Steps | Cents | Hekts | Approximate ratios |
---|---|---|---|
0 | 0 | 0 | 1/1 |
1 | 41.3 | 28.3 | |
2 | 82.7 | 56.5 | 20/19, 21/20, 22/21, 23/22 |
3 | 124 | 84.8 | 14/13, 15/14, 29/27 |
4 | 165.4 | 113 | 11/10 |
5 | 206.7 | 141.3 | 9/8, 26/23 |
6 | 248.1 | 169.6 | 15/13, 22/19, 23/20 |
7 | 289.4 | 197.8 | 13/11 |
8 | 330.8 | 226.1 | 23/19, 29/24 |
9 | 372.1 | 254.3 | 26/21 |
10 | 413.5 | 282.6 | 14/11, 19/15 |
11 | 454.8 | 310.9 | 13/10, 30/23 |
12 | 496.2 | 339.1 | 4/3 |
13 | 537.5 | 367.4 | 15/11, 26/19 |
14 | 578.9 | 395.7 | 7/5 |
15 | 620.2 | 423.9 | 10/7 |
16 | 661.5 | 452.2 | 19/13, 22/15 |
17 | 702.9 | 480.4 | 3/2 |
18 | 744.2 | 508.7 | 20/13, 23/15 |
19 | 785.6 | 537 | 11/7, 30/19 |
20 | 826.9 | 565.2 | 21/13, 29/18 |
21 | 868.3 | 593.5 | |
22 | 909.6 | 621.7 | 22/13, 27/16 |
23 | 951 | 650 | 19/11, 26/15 |
24 | 992.3 | 678.3 | 16/9, 23/13 |
25 | 1033.7 | 706.5 | 20/11, 29/16 |
26 | 1075 | 734.8 | 13/7, 28/15 |
27 | 1116.4 | 763 | 19/10, 21/11 |
28 | 1157.7 | 791.3 | |
29 | 1199.1 | 819.6 | 2/1 |
30 | 1240.4 | 847.8 | |
31 | 1281.8 | 876.1 | 21/10, 23/11 |
32 | 1323.1 | 904.3 | 15/7, 28/13 |
33 | 1364.4 | 932.6 | 11/5 |
34 | 1405.8 | 960.9 | 9/4 |
35 | 1447.1 | 989.1 | 23/10, 30/13 |
36 | 1488.5 | 1017.4 | 26/11 |
37 | 1529.8 | 1045.7 | 29/12 |
38 | 1571.2 | 1073.9 | |
39 | 1612.5 | 1102.2 | 28/11 |
40 | 1653.9 | 1130.4 | 13/5 |
41 | 1695.2 | 1158.7 | 8/3 |
42 | 1736.6 | 1187 | 30/11 |
43 | 1777.9 | 1215.2 | 14/5 |
44 | 1819.3 | 1243.5 | 20/7 |
45 | 1860.6 | 1271.7 | |
46 | 1902 | 1300 | 3/1 |
Harmonics
Harmonic | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | -0.9 | +0.0 | -1.9 | -16.1 | -0.9 | -19.7 | -2.8 | +0.0 | -17.0 | -16.6 | -1.9 |
Relative (%) | -2.3 | +0.0 | -4.6 | -38.9 | -2.3 | -47.7 | -6.8 | +0.0 | -41.2 | -40.2 | -4.6 | |
Steps (reduced) |
29 (29) |
46 (0) |
58 (12) |
67 (21) |
75 (29) |
81 (35) |
87 (41) |
92 (0) |
96 (4) |
100 (8) |
104 (12) |
Harmonic | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | -16.4 | -20.7 | -16.1 | -3.8 | +15.3 | -0.9 | -11.9 | -18.0 | -19.7 | -17.6 | -11.8 |
Relative (%) | -39.7 | -50.0 | -38.9 | -9.1 | +37.1 | -2.3 | -28.7 | -43.4 | -47.7 | -42.5 | -28.6 | |
Steps (reduced) |
107 (15) |
110 (18) |
113 (21) |
116 (24) |
119 (27) |
121 (29) |
123 (31) |
125 (33) |
127 (35) |
129 (37) |
131 (39) |
This page is a stub. You can help the Xenharmonic Wiki by expanding it. |