45edt

From Xenharmonic Wiki
Jump to navigation Jump to search
← 44edt45edt46edt →
Prime factorization 32 × 5
Step size 42.2657¢ 
Octave 28\45edt (1183.44¢)
Consistency limit 2
Distinct consistency limit 2

45EDT is the equal division of the third harmonic into 45 parts of 42.2657 cents each, corresponding to 28.3918 edo. It makes for a strong no-twos 17-limit system, particularly with respect to the tuning of 5, 13, and 17. It tempers out 3125/3087 in the 7-limit, 891/875 and 2475/2401 in the 11-limit, 275/273, 351/343, 847/845 and 2197/2187 in the 13-limit, and 121/119, 459/455 and 2025/2023 in the 17-limit (no-twos subgroup). It is the tenth no-twos zeta peak edt.

Intervals of 45EDT

Degrees Cents hekts Approximate Ratios
0 1/1
1 42.266 28.889
2 84.531 57.778 21/20
3 126.797 86.667 14/13, 15/14, 16/15, 29/27
4 169.063 115.556 11/10
5 211.328 144.444 9/8
6 253.594 173.333 15/13
7 295.86 202.222 19/16
8 338.125 231.111 17/14
9 380.391 260 5/4
10 422.657 288.889 14/11
11 464.922 317.778 21/16, 17/13
12 507.188 336.667 4/3
13 549.454 375.556 11/8
14 591.719 304.444 7/5
15 633.985 433.333 13/9
16 676.251 462.222 40/27. 189/128
17 718.516 491.111 50/33
18 760.782 520 14/9
19 803.048 548.889 8/5
20 845.313 577.778 13/8
21 887.579 606.667 5/3, 17/11
22 929.845 635.556 12/7
23 972.110 664.444 7/4
24 1014.376 693.333 9/5, 33/17
25 1056.642 722.222 24/13
26 1098.907 751.111 17/9
27 1141.173 780 27/14
28 1183.439 808.889 99/50
29 1225.704 837.778 81/40, 128/63
30 1267.97 866.667 27/13
31 1310.236 895.556 32/15
32 1352.501 924.444 24/11
33 1394.767 953.333 9/4 (9/8 plus an octave)
34 1437.033 982.222 16/7, 39/17
35 1479.298 1011.111 33/14
36 1521.564 1040 12/5 (6/5 plus an octave)
37 1563.83 1068.889 42/17
38 1606.095 1097.778 48/19
39 1648.361 1126.667 13/5 (13/10 plus an octave)
40 1690.627 1155.556 8/3
41 1732.892 1184.444 30/11
42 1775.158 1213.333 39/14, 14/5 (7/5 plus an octave), 45/16, 81/29
43 1817.424 1242.222 20/7
44 1859.689 1271.111
45 1901.955 1300 3/1