45edt
Jump to navigation
Jump to search
Prime factorization
32 × 5
Step size
42.2657¢
Octave
28\45edt (1183.44¢)
Consistency limit
2
Distinct consistency limit
2
← 44edt | 45edt | 46edt → |
45EDT is the equal division of the third harmonic into 45 parts of 42.2657 cents each, corresponding to 28.3918 edo. It makes for a strong no-twos 17-limit system, particularly with respect to the tuning of 5, 13, and 17. It tempers out 3125/3087 in the 7-limit, 891/875 and 2475/2401 in the 11-limit, 275/273, 351/343, 847/845 and 2197/2187 in the 13-limit, and 121/119, 459/455 and 2025/2023 in the 17-limit (no-twos subgroup). It is the tenth no-twos zeta peak edt.
Harmonics
Harmonic | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | -16.6 | +0.0 | +9.1 | +3.2 | -16.6 | +12.4 | -7.4 | +0.0 | -13.3 | -9.3 | +9.1 |
Relative (%) | -39.2 | +0.0 | +21.6 | +7.6 | -39.2 | +29.4 | -17.6 | +0.0 | -31.6 | -22.0 | +21.6 | |
Steps (reduced) |
28 (28) |
45 (0) |
57 (12) |
66 (21) |
73 (28) |
80 (35) |
85 (40) |
90 (0) |
94 (4) |
98 (8) |
102 (12) |
Harmonic | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | -2.6 | -4.1 | +3.2 | +18.3 | -2.1 | -16.6 | +16.6 | +12.4 | +12.4 | +16.4 | -18.3 |
Relative (%) | -6.2 | -9.8 | +7.6 | +43.3 | -5.1 | -39.2 | +39.4 | +29.3 | +29.4 | +38.9 | -43.2 | |
Steps (reduced) |
105 (15) |
108 (18) |
111 (21) |
114 (24) |
116 (26) |
118 (28) |
121 (31) |
123 (33) |
125 (35) |
127 (37) |
128 (38) |
Intervals of 45EDT
Degrees | Cents | hekts | Approximate Ratios |
---|---|---|---|
0 | 1/1 | ||
1 | 42.266 | 28.889 | |
2 | 84.531 | 57.778 | 21/20 |
3 | 126.797 | 86.667 | 14/13, 15/14, 16/15, 29/27 |
4 | 169.063 | 115.556 | 11/10 |
5 | 211.328 | 144.444 | 9/8 |
6 | 253.594 | 173.333 | 15/13 |
7 | 295.86 | 202.222 | 19/16 |
8 | 338.125 | 231.111 | 17/14 |
9 | 380.391 | 260 | 5/4 |
10 | 422.657 | 288.889 | 14/11 |
11 | 464.922 | 317.778 | 21/16, 17/13 |
12 | 507.188 | 336.667 | 4/3 |
13 | 549.454 | 375.556 | 11/8 |
14 | 591.719 | 304.444 | 7/5 |
15 | 633.985 | 433.333 | 13/9 |
16 | 676.251 | 462.222 | 40/27. 189/128 |
17 | 718.516 | 491.111 | 50/33 |
18 | 760.782 | 520 | 14/9 |
19 | 803.048 | 548.889 | 8/5 |
20 | 845.313 | 577.778 | 13/8 |
21 | 887.579 | 606.667 | 5/3, 17/11 |
22 | 929.845 | 635.556 | 12/7 |
23 | 972.110 | 664.444 | 7/4 |
24 | 1014.376 | 693.333 | 9/5, 33/17 |
25 | 1056.642 | 722.222 | 24/13 |
26 | 1098.907 | 751.111 | 17/9 |
27 | 1141.173 | 780 | 27/14 |
28 | 1183.439 | 808.889 | 99/50 |
29 | 1225.704 | 837.778 | 81/40, 128/63 |
30 | 1267.97 | 866.667 | 27/13 |
31 | 1310.236 | 895.556 | 32/15 |
32 | 1352.501 | 924.444 | 24/11 |
33 | 1394.767 | 953.333 | 9/4 (9/8 plus an octave) |
34 | 1437.033 | 982.222 | 16/7, 39/17 |
35 | 1479.298 | 1011.111 | 33/14 |
36 | 1521.564 | 1040 | 12/5 (6/5 plus an octave) |
37 | 1563.83 | 1068.889 | 42/17 |
38 | 1606.095 | 1097.778 | 48/19 |
39 | 1648.361 | 1126.667 | 13/5 (13/10 plus an octave) |
40 | 1690.627 | 1155.556 | 8/3 |
41 | 1732.892 | 1184.444 | 30/11 |
42 | 1775.158 | 1213.333 | 39/14, 14/5 (7/5 plus an octave), 45/16, 81/29 |
43 | 1817.424 | 1242.222 | 20/7 |
44 | 1859.689 | 1271.111 | |
45 | 1901.955 | 1300 | 3/1 |