96edt
Jump to navigation
Jump to search
Prime factorization
25 × 3
Step size
19.812¢
Octave
61\96edt (1208.53¢)
Consistency limit
2
Distinct consistency limit
2
This page is a stub. You can help the Xenharmonic Wiki by expanding it. |
← 95edt | 96edt | 97edt → |
96 equal divisions of the tritave, perfect twelfth, or 3rd harmonic (abbreviated 96edt or 96ed3), is a nonoctave tuning system that divides the interval of 3/1 into 96 equal parts of about 19.8 ¢ each. Each step represents a frequency ratio of 31/96, or the 96th root of 3.
Intervals
Steps | Cents | Approximate Ratios |
---|---|---|
0 | 0 | 1/1 |
1 | 19.812 | |
2 | 39.624 | 42/41, 43/42 |
3 | 59.436 | |
4 | 79.248 | |
5 | 99.06 | 18/17 |
6 | 118.872 | 15/14 |
7 | 138.684 | |
8 | 158.496 | 23/21 |
9 | 178.308 | 41/37 |
10 | 198.12 | 28/25, 37/33 |
11 | 217.932 | 17/15, 42/37 |
12 | 237.744 | 31/27 |
13 | 257.556 | |
14 | 277.368 | 27/23 |
15 | 297.18 | |
16 | 316.993 | 6/5 |
17 | 336.805 | 17/14 |
18 | 356.617 | 43/35 |
19 | 376.429 | 41/33 |
20 | 396.241 | 39/31 |
21 | 416.053 | 14/11 |
22 | 435.865 | 9/7 |
23 | 455.677 | 43/33 |
24 | 475.489 | |
25 | 495.301 | |
26 | 515.113 | 31/23, 35/26, 39/29 |
27 | 534.925 | 15/11, 34/25 |
28 | 554.737 | |
29 | 574.549 | |
30 | 594.361 | |
31 | 614.173 | |
32 | 633.985 | |
33 | 653.797 | |
34 | 673.609 | 31/21 |
35 | 693.421 | |
36 | 713.233 | |
37 | 733.045 | 26/17, 29/19 |
38 | 752.857 | 17/11 |
39 | 772.669 | |
40 | 792.481 | |
41 | 812.293 | |
42 | 832.105 | 21/13 |
43 | 851.917 | 18/11 |
44 | 871.729 | 38/23, 43/26 |
45 | 891.541 | |
46 | 911.353 | |
47 | 931.165 | |
48 | 950.978 | 26/15 |
49 | 970.79 | |
50 | 990.602 | |
51 | 1010.414 | |
52 | 1030.226 | |
53 | 1050.038 | 11/6 |
54 | 1069.85 | 13/7 |
55 | 1089.662 | |
56 | 1109.474 | |
57 | 1129.286 | |
58 | 1149.098 | 33/17, 35/18 |
59 | 1168.91 | |
60 | 1188.722 | |
61 | 1208.534 | |
62 | 1228.346 | |
63 | 1248.158 | 35/17, 37/18 |
64 | 1267.97 | |
65 | 1287.782 | |
66 | 1307.594 | |
67 | 1327.406 | |
68 | 1347.218 | 37/17 |
69 | 1367.03 | 11/5 |
70 | 1386.842 | 29/13 |
71 | 1406.654 | |
72 | 1426.466 | 41/18 |
73 | 1446.278 | |
74 | 1466.09 | 7/3 |
75 | 1485.902 | 33/14 |
76 | 1505.714 | 31/13, 43/18 |
77 | 1525.526 | 41/17 |
78 | 1545.338 | |
79 | 1565.15 | 37/15, 42/17 |
80 | 1584.963 | 5/2 |
81 | 1604.775 | 43/17 |
82 | 1624.587 | 23/9 |
83 | 1644.399 | |
84 | 1664.211 | |
85 | 1684.023 | 37/14 |
86 | 1703.835 | |
87 | 1723.647 | |
88 | 1743.459 | |
89 | 1763.271 | |
90 | 1783.083 | 14/5 |
91 | 1802.895 | 17/6 |
92 | 1822.707 | 43/15 |
93 | 1842.519 | |
94 | 1862.331 | 41/14 |
95 | 1882.143 | |
96 | 1901.955 | 3/1 |
Harmonics
Harmonic | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | +8.53 | +0.00 | -2.74 | +7.18 | +8.53 | -0.78 | +5.79 | +0.00 | -4.10 | +9.21 | -2.74 |
Relative (%) | +43.1 | +0.0 | -13.9 | +36.3 | +43.1 | -3.9 | +29.2 | +0.0 | -20.7 | +46.5 | -13.9 | |
Steps (reduced) |
61 (61) |
96 (0) |
121 (25) |
141 (45) |
157 (61) |
170 (74) |
182 (86) |
192 (0) |
201 (9) |
210 (18) |
217 (25) |
Harmonic | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | -2.63 | +7.75 | +7.18 | -5.49 | +8.43 | +8.53 | -5.82 | +4.44 | -0.78 | -2.07 | +0.22 |
Relative (%) | -13.3 | +39.1 | +36.3 | -27.7 | +42.5 | +43.1 | -29.4 | +22.4 | -3.9 | -10.4 | +1.1 | |
Steps (reduced) |
224 (32) |
231 (39) |
237 (45) |
242 (50) |
248 (56) |
253 (61) |
257 (65) |
262 (70) |
266 (74) |
270 (78) |
274 (82) |