96edt

From Xenharmonic Wiki
Jump to navigation Jump to search
Icon-Stub.png This page is a stub. You can help the Xenharmonic Wiki by expanding it.
← 95edt 96edt 97edt →
Prime factorization 25 × 3
Step size 19.812¢ 
Octave 61\96edt (1208.53¢)
Consistency limit 2
Distinct consistency limit 2

96 equal divisions of the tritave, perfect twelfth, or 3rd harmonic (abbreviated 96edt or 96ed3), is a nonoctave tuning system that divides the interval of 3/1 into 96 equal parts of about 19.8⁠ ⁠¢ each. Each step represents a frequency ratio of 31/96, or the 96th root of 3.

Intervals

Steps Cents Hekts Approximate ratios
0 0 0 1/1
1 19.8 13.5
2 39.6 27.1 42/41, 43/42
3 59.4 40.6
4 79.2 54.2
5 99.1 67.7 18/17
6 118.9 81.3 15/14
7 138.7 94.8
8 158.5 108.3 23/21
9 178.3 121.9 41/37
10 198.1 135.4 28/25, 37/33
11 217.9 149 17/15, 42/37
12 237.7 162.5 31/27
13 257.6 176
14 277.4 189.6 27/23
15 297.2 203.1
16 317 216.7 6/5
17 336.8 230.2 17/14
18 356.6 243.8 43/35
19 376.4 257.3 41/33
20 396.2 270.8 39/31
21 416.1 284.4 14/11
22 435.9 297.9 9/7
23 455.7 311.5 43/33
24 475.5 325
25 495.3 338.5
26 515.1 352.1 31/23, 35/26, 39/29
27 534.9 365.6 15/11, 34/25
28 554.7 379.2
29 574.5 392.7
30 594.4 406.3
31 614.2 419.8
32 634 433.3
33 653.8 446.9
34 673.6 460.4 31/21
35 693.4 474
36 713.2 487.5
37 733 501 26/17, 29/19
38 752.9 514.6 17/11
39 772.7 528.1
40 792.5 541.7
41 812.3 555.2
42 832.1 568.8 21/13
43 851.9 582.3 18/11
44 871.7 595.8 38/23, 43/26
45 891.5 609.4
46 911.4 622.9
47 931.2 636.5
48 951 650 26/15
49 970.8 663.5
50 990.6 677.1
51 1010.4 690.6
52 1030.2 704.2
53 1050 717.7 11/6
54 1069.8 731.3 13/7
55 1089.7 744.8
56 1109.5 758.3
57 1129.3 771.9
58 1149.1 785.4 33/17, 35/18
59 1168.9 799
60 1188.7 812.5
61 1208.5 826
62 1228.3 839.6
63 1248.2 853.1 35/17, 37/18
64 1268 866.7
65 1287.8 880.2
66 1307.6 893.8
67 1327.4 907.3
68 1347.2 920.8 37/17
69 1367 934.4 11/5
70 1386.8 947.9 29/13
71 1406.7 961.5
72 1426.5 975 41/18
73 1446.3 988.5
74 1466.1 1002.1 7/3
75 1485.9 1015.6 33/14
76 1505.7 1029.2 31/13, 43/18
77 1525.5 1042.7 41/17
78 1545.3 1056.3
79 1565.2 1069.8 37/15, 42/17
80 1585 1083.3 5/2
81 1604.8 1096.9 43/17
82 1624.6 1110.4 23/9
83 1644.4 1124
84 1664.2 1137.5
85 1684 1151 37/14
86 1703.8 1164.6
87 1723.6 1178.1
88 1743.5 1191.7
89 1763.3 1205.2
90 1783.1 1218.8 14/5
91 1802.9 1232.3 17/6
92 1822.7 1245.8 43/15
93 1842.5 1259.4
94 1862.3 1272.9 41/14
95 1882.1 1286.5
96 1902 1300 3/1

Harmonics

Approximation of harmonics in 96edt
Harmonic 2 3 4 5 6 7 8 9 10 11 12
Error Absolute (¢) +8.53 +0.00 -2.74 +7.18 +8.53 -0.78 +5.79 +0.00 -4.10 +9.21 -2.74
Relative (%) +43.1 +0.0 -13.9 +36.3 +43.1 -3.9 +29.2 +0.0 -20.7 +46.5 -13.9
Steps
(reduced)
61
(61)
96
(0)
121
(25)
141
(45)
157
(61)
170
(74)
182
(86)
192
(0)
201
(9)
210
(18)
217
(25)
Approximation of harmonics in 96edt
Harmonic 13 14 15 16 17 18 19 20 21 22 23
Error Absolute (¢) -2.63 +7.75 +7.18 -5.49 +8.43 +8.53 -5.82 +4.44 -0.78 -2.07 +0.22
Relative (%) -13.3 +39.1 +36.3 -27.7 +42.5 +43.1 -29.4 +22.4 -3.9 -10.4 +1.1
Steps
(reduced)
224
(32)
231
(39)
237
(45)
242
(50)
248
(56)
253
(61)
257
(65)
262
(70)
266
(74)
270
(78)
274
(82)