97edt

From Xenharmonic Wiki
Jump to navigation Jump to search
← 96edt 97edt 98edt →
Prime factorization 97 (prime)
Step size 19.6078¢ 
Octave 61\97edt (1196.07¢)
Consistency limit 5
Distinct consistency limit 5

Division of the third harmonic into 97 equal parts (97EDT) is related to 61 edo, but with the 3/1 rather than the 2/1 being just; in fact, 97edt is close to 61.2002edo, meaning that its step is very accurately represented by 5 steps of 306edo. The octave is about 3.9252 cents compressed and the step size is about 19.6078 cents.

Lookalikes: 61edo, 141ed5, 158ed6

Intervals

Steps Cents Hekts Approximate ratios
0 0 0 1/1
1 19.6 13.4
2 39.2 26.8 42/41, 43/42, 44/43
3 58.8 40.2 29/28, 30/29, 31/30
4 78.4 53.6 22/21, 23/22
5 98 67 18/17, 37/35
6 117.6 80.4 15/14, 31/29
7 137.3 93.8 13/12
8 156.9 107.2 23/21
9 176.5 120.6 31/28, 41/37
10 196.1 134 28/25, 37/33
11 215.7 147.4 17/15, 43/38
12 235.3 160.8 39/34
13 254.9 174.2 22/19, 29/25
14 274.5 187.6 34/29, 41/35
15 294.1 201
16 313.7 214.4 6/5
17 333.3 227.8 23/19
18 352.9 241.2 27/22, 38/31
19 372.5 254.6 31/25, 36/29
20 392.2 268
21 411.8 281.4 19/15
22 431.4 294.8
23 451 308.2 35/27
24 470.6 321.6
25 490.2 335.1
26 509.8 348.5
27 529.4 361.9 19/14
28 549 375.3
29 568.6 388.7 25/18, 43/31
30 588.2 402.1
31 607.8 415.5 27/19, 44/31
32 627.4 428.9 33/23
33 647.1 442.3
34 666.7 455.7 25/17
35 686.3 469.1
36 705.9 482.5
37 725.5 495.9 35/23, 38/25, 41/27
38 745.1 509.3 20/13, 43/28
39 764.7 522.7 14/9
40 784.3 536.1 11/7
41 803.9 549.5 35/22, 43/27
42 823.5 562.9 29/18, 37/23
43 843.1 576.3 44/27
44 862.7 589.7 28/17
45 882.4 603.1 5/3
46 902 616.5 37/22
47 921.6 629.9
48 941.2 643.3 31/18, 43/25
49 960.8 656.7
50 980.4 670.1 37/21, 44/25
51 1000 683.5 41/23
52 1019.6 696.9 9/5
53 1039.2 710.3 31/17
54 1058.8 723.7 35/19
55 1078.4 737.1 28/15, 41/22
56 1098 750.5
57 1117.6 763.9 21/11
58 1137.3 777.3 27/14
59 1156.9 790.7 39/20, 41/21
60 1176.5 804.1
61 1196.1 817.5
62 1215.7 830.9
63 1235.3 844.3
64 1254.9 857.7 31/15
65 1274.5 871.1 23/11
66 1294.1 884.5 19/9
67 1313.7 897.9
68 1333.3 911.3 41/19
69 1352.9 924.7
70 1372.5 938.1 42/19
71 1392.2 951.5 38/17
72 1411.8 964.9 43/19
73 1431.4 978.4
74 1451 991.8
75 1470.6 1005.2
76 1490.2 1018.6
77 1509.8 1032 43/18
78 1529.4 1045.4 29/12
79 1549 1058.8 22/9
80 1568.6 1072.2
81 1588.2 1085.6 5/2
82 1607.8 1099 38/15, 43/17
83 1627.4 1112.4
84 1647.1 1125.8 44/17
85 1666.7 1139.2 34/13
86 1686.3 1152.6
87 1705.9 1166
88 1725.5 1179.4
89 1745.1 1192.8
90 1764.7 1206.2 36/13
91 1784.3 1219.6 14/5
92 1803.9 1233 17/6
93 1823.5 1246.4 43/15
94 1843.1 1259.8 29/10
95 1862.7 1273.2 41/14, 44/15
96 1882.3 1286.6
97 1902 1300 3/1

Harmonics

Approximation of prime harmonics in 97edt
Harmonic 2 3 5 7 11 13 17 19 23 29 31
Error Absolute (¢) -3.93 +0.00 -2.01 +3.71 +5.53 -9.17 -3.01 +0.51 +3.08 -6.07 -3.88
Relative (%) -20.0 +0.0 -10.2 +18.9 +28.2 -46.8 -15.3 +2.6 +15.7 -30.9 -19.8
Steps
(reduced)
61
(61)
97
(0)
142
(45)
172
(75)
212
(18)
226
(32)
250
(56)
260
(66)
277
(83)
297
(6)
303
(12)
Approximation of prime harmonics in 97edt
Harmonic 37 41 43 47 53 59 61 67 71 73 79
Error Absolute (¢) +3.54 +2.29 -1.73 +1.14 +8.83 -0.37 +0.74 -4.82 -7.17 +3.56 +4.07
Relative (%) +18.0 +11.7 -8.8 +5.8 +45.0 -1.9 +3.8 -24.6 -36.6 +18.2 +20.7
Steps
(reduced)
319
(28)
328
(37)
332
(41)
340
(49)
351
(60)
360
(69)
363
(72)
371
(80)
376
(85)
379
(88)
386
(95)

Music