97edt

From Xenharmonic Wiki
Jump to navigation Jump to search
← 96edt97edt98edt →
Prime factorization 97 (prime)
Step size 19.6078¢ 
Octave 61\97edt (1196.07¢)
Consistency limit 5
Distinct consistency limit 5

Division of the third harmonic into 97 equal parts (97EDT) is related to 61 edo, but with the 3/1 rather than the 2/1 being just; in fact, 97edt is close to 61.2002edo, meaning that its step is very accurately represented by 5 steps of 306edo. The octave is about 3.9252 cents compressed and the step size is about 19.6078 cents.

Lookalikes: 61edo, 141ed5, 158ed6

Intervals

Steps Cents Approximate Ratios
0 0 1/1
1 19.608
2 39.216 42/41, 43/42, 44/43
3 58.823 29/28, 30/29, 31/30
4 78.431 22/21, 23/22
5 98.039 18/17, 37/35
6 117.647 15/14, 31/29
7 137.254 13/12
8 156.862 23/21
9 176.47 31/28, 41/37
10 196.078 28/25, 37/33
11 215.686 17/15, 43/38
12 235.293 39/34
13 254.901 22/19, 29/25
14 274.509 34/29, 41/35
15 294.117
16 313.725 6/5
17 333.332 23/19
18 352.94 27/22, 38/31
19 372.548 31/25, 36/29
20 392.156
21 411.763 19/15
22 431.371
23 450.979 35/27
24 470.587
25 490.195
26 509.802
27 529.41 19/14
28 549.018
29 568.626 25/18, 43/31
30 588.234
31 607.841 27/19, 44/31
32 627.449 33/23
33 647.057
34 666.665 25/17
35 686.272
36 705.88
37 725.488 35/23, 38/25, 41/27
38 745.096 20/13, 43/28
39 764.704 14/9
40 784.311 11/7
41 803.919 35/22, 43/27
42 823.527 29/18, 37/23
43 843.135 44/27
44 862.742 28/17
45 882.35 5/3
46 901.958 37/22
47 921.566
48 941.174 31/18, 43/25
49 960.781
50 980.389 37/21, 44/25
51 999.997 41/23
52 1019.605 9/5
53 1039.213 31/17
54 1058.82 35/19
55 1078.428 28/15, 41/22
56 1098.036
57 1117.644 21/11
58 1137.251 27/14
59 1156.859 39/20, 41/21
60 1176.467
61 1196.075
62 1215.683
63 1235.29
64 1254.898 31/15
65 1274.506 23/11
66 1294.114 19/9
67 1313.721
68 1333.329 41/19
69 1352.937
70 1372.545 42/19
71 1392.153 38/17
72 1411.76 43/19
73 1431.368
74 1450.976
75 1470.584
76 1490.192
77 1509.799 43/18
78 1529.407 29/12
79 1549.015 22/9
80 1568.623
81 1588.23 5/2
82 1607.838 38/15, 43/17
83 1627.446
84 1647.054 44/17
85 1666.662 34/13
86 1686.269
87 1705.877
88 1725.485
89 1745.093
90 1764.701 36/13
91 1784.308 14/5
92 1803.916 17/6
93 1823.524 43/15
94 1843.132 29/10
95 1862.739 41/14, 44/15
96 1882.347
97 1901.955 3/1

Harmonics

Approximation of prime harmonics in 97edt
Harmonic 2 3 5 7 11 13 17 19 23 29 31
Error Absolute (¢) -3.93 +0.00 -2.01 +3.71 +5.53 -9.17 -3.01 +0.51 +3.08 -6.07 -3.88
Relative (%) -20.0 +0.0 -10.2 +18.9 +28.2 -46.8 -15.3 +2.6 +15.7 -30.9 -19.8
Steps
(reduced)
61
(61)
97
(0)
142
(45)
172
(75)
212
(18)
226
(32)
250
(56)
260
(66)
277
(83)
297
(6)
303
(12)
Approximation of prime harmonics in 97edt
Harmonic 37 41 43 47 53 59 61 67 71 73 79
Error Absolute (¢) +3.54 +2.29 -1.73 +1.14 +8.83 -0.37 +0.74 -4.82 -7.17 +3.56 +4.07
Relative (%) +18.0 +11.7 -8.8 +5.8 +45.0 -1.9 +3.8 -24.6 -36.6 +18.2 +20.7
Steps
(reduced)
319
(28)
328
(37)
332
(41)
340
(49)
351
(60)
360
(69)
363
(72)
371
(80)
376
(85)
379
(88)
386
(95)

Music