98edt

From Xenharmonic Wiki
Jump to navigation Jump to search
← 97edt 98edt 99edt →
Prime factorization 2 × 72
Step size 19.4077 ¢ 
Octave 62\98edt (1203.28 ¢) (→ 31\49edt)
Consistency limit 7
Distinct consistency limit 7

98 equal divisions of the tritave, perfect twelfth, or 3rd harmonic (abbreviated 98edt or 98ed3), is a nonoctave tuning system that divides the interval of 3/1 into 98 equal parts of about 19.4 ¢ each. Each step represents a frequency ratio of 31/98, or the 98th root of 3.

Theory

98edt is related to 62edo, but with the twelfth rather than the octave being just. The octave is stretched by about 3.28 cents, same as in 49edt. Unlike 62edo, which is consistent to the 8-integer-limit, 98edt is only consistent to the 7-integer-limit. The prime harmonics 2 to 23 are all tuned sharp, except for 3.

Harmonics

Approximation of harmonics in 98edt
Harmonic 2 3 4 5 6 7 8 9 10 11 12
Error Absolute (¢) +3.28 +0.00 +6.56 +8.40 +3.28 +8.11 -9.57 +0.00 -7.73 +1.93 +6.56
Relative (%) +16.9 +0.0 +33.8 +43.3 +16.9 +41.8 -49.3 +0.0 -39.9 +9.9 +33.8
Steps
(reduced)
62
(62)
98
(0)
124
(26)
144
(46)
160
(62)
174
(76)
185
(87)
196
(0)
205
(9)
214
(18)
222
(26)
Approximation of harmonics in 98edt (continued)
Harmonic 13 14 15 16 17 18 19 20 21 22 23 24
Error Absolute (¢) +3.84 -8.02 +8.40 -6.30 +5.19 +3.28 +6.71 -4.46 +8.11 +5.21 +5.88 -9.57
Relative (%) +19.8 -41.3 +43.3 -32.4 +26.8 +16.9 +34.6 -23.0 +41.8 +26.8 +30.3 -49.3
Steps
(reduced)
229
(33)
235
(39)
242
(46)
247
(51)
253
(57)
258
(62)
263
(67)
267
(71)
272
(76)
276
(80)
280
(84)
283
(87)

Subsets and supersets

Since 98 factors into primes as 2 × 72, 98edt contains subset edts 2, 7, 14, and 49.

Intervals

Steps Cents Hekts Approximate ratios
0 0 0 1/1
1 19.4 13.3
2 38.8 26.5 43/42, 44/43
3 58.2 39.8
4 77.6 53.1 23/22
5 97 66.3 18/17
6 116.4 79.6 31/29
7 135.9 92.9
8 155.3 106.1 23/21, 35/32
9 174.7 119.4 21/19
10 194.1 132.7 19/17, 28/25
11 213.5 145.9 26/23, 43/38
12 232.9 159.2 8/7
13 252.3 172.4 22/19
14 271.7 185.7
15 291.1 199 13/11
16 310.5 212.2
17 329.9 225.5 23/19
18 349.3 238.8 11/9
19 368.7 252 26/21
20 388.2 265.3 5/4
21 407.6 278.6 19/15, 43/34
22 427 291.8 32/25
23 446.4 305.1 22/17
24 465.8 318.4 17/13
25 485.2 331.6 41/31
26 504.6 344.9
27 524 358.2 23/17
28 543.4 371.4 26/19, 37/27
29 562.8 384.7 18/13
30 582.2 398 7/5
31 601.6 411.2 17/12, 41/29
32 621 424.5 43/30
33 640.5 437.8
34 659.9 451
35 679.3 464.3
36 698.7 477.6
37 718.1 490.8
38 737.5 504.1 23/15, 26/17
39 756.9 517.3
40 776.3 530.6 36/23
41 795.7 543.9 19/12
42 815.1 557.1 8/5
43 834.5 570.4 34/21
44 853.9 583.7 18/11
45 873.3 596.9 43/26
46 892.8 610.2
47 912.2 623.5 22/13, 39/23
48 931.6 636.7 12/7
49 951 650 26/15
50 970.4 663.3 7/4
51 989.8 676.5 23/13, 39/22
52 1009.2 689.8 34/19, 43/24
53 1028.6 703.1 38/21
54 1048 716.3 11/6
55 1067.4 729.6
56 1086.8 742.9 15/8
57 1106.2 756.1 36/19
58 1125.6 769.4 23/12
59 1145.1 782.7
60 1164.5 795.9
61 1183.9 809.2
62 1203.3 822.4
63 1222.7 835.7
64 1242.1 849 43/21
65 1261.5 862.2
66 1280.9 875.5 44/21
67 1300.3 888.8 36/17
68 1319.7 902 15/7
69 1339.1 915.3 13/6
70 1358.5 928.6
71 1377.9 941.8
72 1397.4 955.1
73 1416.8 968.4 34/15
74 1436.2 981.6 39/17
75 1455.6 994.9 44/19
76 1475 1008.2
77 1494.4 1021.4
78 1513.8 1034.7 12/5
79 1533.2 1048
80 1552.6 1061.2 27/11
81 1572 1074.5
82 1591.4 1087.8
83 1610.8 1101 33/13, 38/15
84 1630.2 1114.3
85 1649.7 1127.6
86 1669.1 1140.8 21/8
87 1688.5 1154.1
88 1707.9 1167.3
89 1727.3 1180.6 19/7
90 1746.7 1193.9
91 1766.1 1207.1
92 1785.5 1220.4
93 1804.9 1233.7 17/6
94 1824.3 1246.9 43/15
95 1843.7 1260.2
96 1863.1 1273.5 44/15
97 1882.5 1286.7
98 1902 1300 3/1

See also