98edt
Jump to navigation
Jump to search
Prime factorization
2 × 72
Step size
19.4077¢
Octave
62\98edt (1203.28¢) (→31\49edt)
Consistency limit
7
Distinct consistency limit
7
This page is a stub. You can help the Xenharmonic Wiki by expanding it. |
← 97edt | 98edt | 99edt → |
98 equal divisions of the tritave, perfect twelfth, or 3rd harmonic (abbreviated 98edt or 98ed3), is a nonoctave tuning system that divides the interval of 3/1 into 98 equal parts of about 19.4 ¢ each. Each step represents a frequency ratio of 31/98, or the 98th root of 3.
Intervals
Steps | Cents | Approximate Ratios |
---|---|---|
0 | 0 | 1/1 |
1 | 19.408 | |
2 | 38.815 | 43/42, 44/43 |
3 | 58.223 | |
4 | 77.631 | 23/22 |
5 | 97.039 | 18/17 |
6 | 116.446 | 31/29 |
7 | 135.854 | |
8 | 155.262 | 23/21, 35/32 |
9 | 174.669 | 21/19 |
10 | 194.077 | 19/17, 28/25 |
11 | 213.485 | 26/23, 43/38 |
12 | 232.892 | 8/7 |
13 | 252.3 | 22/19 |
14 | 271.708 | |
15 | 291.116 | 13/11 |
16 | 310.523 | |
17 | 329.931 | 23/19 |
18 | 349.339 | 11/9 |
19 | 368.746 | 26/21 |
20 | 388.154 | 5/4 |
21 | 407.562 | 19/15, 43/34 |
22 | 426.969 | 32/25 |
23 | 446.377 | 22/17 |
24 | 465.785 | 17/13 |
25 | 485.193 | 41/31 |
26 | 504.6 | |
27 | 524.008 | 23/17 |
28 | 543.416 | 26/19, 37/27 |
29 | 562.823 | 18/13 |
30 | 582.231 | 7/5 |
31 | 601.639 | 17/12, 41/29 |
32 | 621.047 | 43/30 |
33 | 640.454 | |
34 | 659.862 | |
35 | 679.27 | |
36 | 698.677 | |
37 | 718.085 | |
38 | 737.493 | 23/15, 26/17 |
39 | 756.9 | |
40 | 776.308 | 36/23 |
41 | 795.716 | 19/12 |
42 | 815.124 | 8/5 |
43 | 834.531 | 34/21 |
44 | 853.939 | 18/11 |
45 | 873.347 | 43/26 |
46 | 892.754 | |
47 | 912.162 | 22/13, 39/23 |
48 | 931.57 | 12/7 |
49 | 950.978 | 26/15 |
50 | 970.385 | 7/4 |
51 | 989.793 | 23/13, 39/22 |
52 | 1009.201 | 34/19, 43/24 |
53 | 1028.608 | 38/21 |
54 | 1048.016 | 11/6 |
55 | 1067.424 | |
56 | 1086.831 | 15/8 |
57 | 1106.239 | 36/19 |
58 | 1125.647 | 23/12 |
59 | 1145.055 | |
60 | 1164.462 | |
61 | 1183.87 | |
62 | 1203.278 | |
63 | 1222.685 | |
64 | 1242.093 | 43/21 |
65 | 1261.501 | |
66 | 1280.908 | 44/21 |
67 | 1300.316 | 36/17 |
68 | 1319.724 | 15/7 |
69 | 1339.132 | 13/6 |
70 | 1358.539 | |
71 | 1377.947 | |
72 | 1397.355 | |
73 | 1416.762 | 34/15 |
74 | 1436.17 | 39/17 |
75 | 1455.578 | 44/19 |
76 | 1474.986 | |
77 | 1494.393 | |
78 | 1513.801 | 12/5 |
79 | 1533.209 | |
80 | 1552.616 | 27/11 |
81 | 1572.024 | |
82 | 1591.432 | |
83 | 1610.839 | 33/13, 38/15 |
84 | 1630.247 | |
85 | 1649.655 | |
86 | 1669.063 | 21/8 |
87 | 1688.47 | |
88 | 1707.878 | |
89 | 1727.286 | 19/7 |
90 | 1746.693 | |
91 | 1766.101 | |
92 | 1785.509 | |
93 | 1804.916 | 17/6 |
94 | 1824.324 | 43/15 |
95 | 1843.732 | |
96 | 1863.14 | 44/15 |
97 | 1882.547 | |
98 | 1901.955 | 3/1 |
Harmonics
Harmonic | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | +3.28 | +0.00 | +6.56 | +8.40 | +3.28 | +8.11 | -9.57 | +0.00 | -7.73 | +1.93 | +6.56 |
Relative (%) | +16.9 | +0.0 | +33.8 | +43.3 | +16.9 | +41.8 | -49.3 | +0.0 | -39.9 | +9.9 | +33.8 | |
Steps (reduced) |
62 (62) |
98 (0) |
124 (26) |
144 (46) |
160 (62) |
174 (76) |
185 (87) |
196 (0) |
205 (9) |
214 (18) |
222 (26) |
Harmonic | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | +3.84 | -8.02 | +8.40 | -6.30 | +5.19 | +3.28 | +6.71 | -4.46 | +8.11 | +5.21 | +5.88 |
Relative (%) | +19.8 | -41.3 | +43.3 | -32.4 | +26.8 | +16.9 | +34.6 | -23.0 | +41.8 | +26.8 | +30.3 | |
Steps (reduced) |
229 (33) |
235 (39) |
242 (46) |
247 (51) |
253 (57) |
258 (62) |
263 (67) |
267 (71) |
272 (76) |
276 (80) |
280 (84) |