99edt
Jump to navigation
Jump to search
Prime factorization
32 × 11
Step size
19.2117¢
Octave
62\99edt (1191.12¢)
Consistency limit
2
Distinct consistency limit
2
This page is a stub. You can help the Xenharmonic Wiki by expanding it. |
← 98edt | 99edt | 100edt → |
99 equal divisions of the tritave, perfect twelfth, or 3rd harmonic (abbreviated 99edt or 99ed3), is a nonoctave tuning system that divides the interval of 3/1 into 99 equal parts of about 19.2 ¢ each. Each step represents a frequency ratio of 31/99, or the 99th root of 3.
Intervals
Steps | Cents | Approximate Ratios |
---|---|---|
0 | 0 | 1/1 |
1 | 19.212 | |
2 | 38.423 | |
3 | 57.635 | 30/29, 31/30 |
4 | 76.847 | |
5 | 96.058 | 19/18, 37/35 |
6 | 115.27 | 31/29 |
7 | 134.482 | 27/25 |
8 | 153.693 | |
9 | 172.905 | 21/19 |
10 | 192.117 | 19/17 |
11 | 211.328 | 35/31 |
12 | 230.54 | |
13 | 249.752 | 15/13 |
14 | 268.963 | 7/6 |
15 | 288.175 | 13/11 |
16 | 307.387 | 37/31 |
17 | 326.598 | 35/29 |
18 | 345.81 | 11/9 |
19 | 365.022 | 21/17, 37/30 |
20 | 384.233 | |
21 | 403.445 | |
22 | 422.657 | 37/29 |
23 | 441.868 | |
24 | 461.08 | |
25 | 480.292 | 29/22, 33/25 |
26 | 499.503 | |
27 | 518.715 | |
28 | 537.927 | 15/11 |
29 | 557.138 | 29/21 |
30 | 576.35 | |
31 | 595.562 | 31/22 |
32 | 614.773 | |
33 | 633.985 | |
34 | 653.197 | |
35 | 672.408 | 31/21 |
36 | 691.62 | |
37 | 710.832 | |
38 | 730.043 | 29/19 |
39 | 749.255 | |
40 | 768.467 | 39/25 |
41 | 787.678 | |
42 | 806.89 | 43/27 |
43 | 826.102 | 29/18 |
44 | 845.313 | 31/19 |
45 | 864.525 | |
46 | 883.737 | 5/3 |
47 | 902.948 | |
48 | 922.16 | 29/17 |
49 | 941.372 | 31/18, 43/25 |
50 | 960.583 | |
51 | 979.795 | 37/21 |
52 | 999.007 | 41/23 |
53 | 1018.218 | 9/5 |
54 | 1037.43 | |
55 | 1056.642 | 35/19 |
56 | 1075.853 | |
57 | 1095.065 | |
58 | 1114.277 | |
59 | 1133.488 | 25/13 |
60 | 1152.7 | 35/18, 37/19 |
61 | 1171.912 | |
62 | 1191.123 | |
63 | 1210.335 | |
64 | 1229.547 | |
65 | 1248.758 | 35/17, 37/18 |
66 | 1267.97 | |
67 | 1287.182 | |
68 | 1306.393 | |
69 | 1325.605 | |
70 | 1344.817 | 37/17 |
71 | 1364.028 | 11/5 |
72 | 1383.24 | |
73 | 1402.452 | |
74 | 1421.663 | 25/11 |
75 | 1440.875 | |
76 | 1460.087 | |
77 | 1479.298 | |
78 | 1498.51 | |
79 | 1517.722 | |
80 | 1536.933 | 17/7 |
81 | 1556.145 | 27/11 |
82 | 1575.357 | |
83 | 1594.568 | |
84 | 1613.78 | 33/13 |
85 | 1632.992 | 18/7 |
86 | 1652.203 | 13/5 |
87 | 1671.415 | |
88 | 1690.627 | |
89 | 1709.838 | |
90 | 1729.05 | 19/7 |
91 | 1748.262 | |
92 | 1767.473 | 25/9 |
93 | 1786.685 | |
94 | 1805.897 | |
95 | 1825.108 | 43/15 |
96 | 1844.32 | 29/10 |
97 | 1863.532 | |
98 | 1882.743 | |
99 | 1901.955 | 3/1 |
Harmonics
Harmonic | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | -8.88 | +0.00 | +1.46 | -0.62 | -8.88 | -6.78 | -7.42 | +0.00 | -9.50 | -1.60 | +1.46 |
Relative (%) | -46.2 | +0.0 | +7.6 | -3.2 | -46.2 | -35.3 | -38.6 | +0.0 | -49.4 | -8.3 | +7.6 | |
Steps (reduced) |
62 (62) |
99 (0) |
125 (26) |
145 (46) |
161 (62) |
175 (76) |
187 (88) |
198 (0) |
207 (9) |
216 (18) |
224 (26) |
Harmonic | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | -2.63 | +3.55 | -0.62 | +2.92 | -5.98 | -8.88 | -6.42 | +0.84 | -6.78 | +8.74 | +8.63 |
Relative (%) | -13.7 | +18.5 | -3.2 | +15.2 | -31.1 | -46.2 | -33.4 | +4.4 | -35.3 | +45.5 | +44.9 | |
Steps (reduced) |
231 (33) |
238 (40) |
244 (46) |
250 (52) |
255 (57) |
260 (62) |
265 (67) |
270 (72) |
274 (76) |
279 (81) |
283 (85) |