99edt
Jump to navigation
Jump to search
Prime factorization
32 × 11
Step size
19.2117¢
Octave
62\99edt (1191.12¢)
Consistency limit
2
Distinct consistency limit
2
This page is a stub. You can help the Xenharmonic Wiki by expanding it. |
← 98edt | 99edt | 100edt → |
99 equal divisions of the tritave, perfect twelfth, or 3rd harmonic (abbreviated 99edt or 99ed3), is a nonoctave tuning system that divides the interval of 3/1 into 99 equal parts of about 19.2 ¢ each. Each step represents a frequency ratio of 31/99, or the 99th root of 3.
Intervals
Steps | Cents | Hekts | Approximate ratios |
---|---|---|---|
0 | 0 | 0 | 1/1 |
1 | 19.2 | 13.1 | |
2 | 38.4 | 26.3 | |
3 | 57.6 | 39.4 | 30/29, 31/30 |
4 | 76.8 | 52.5 | |
5 | 96.1 | 65.7 | 19/18, 37/35 |
6 | 115.3 | 78.8 | 31/29 |
7 | 134.5 | 91.9 | 27/25 |
8 | 153.7 | 105.1 | |
9 | 172.9 | 118.2 | 21/19 |
10 | 192.1 | 131.3 | 19/17 |
11 | 211.3 | 144.4 | 35/31 |
12 | 230.5 | 157.6 | |
13 | 249.8 | 170.7 | 15/13 |
14 | 269 | 183.8 | 7/6 |
15 | 288.2 | 197 | 13/11 |
16 | 307.4 | 210.1 | 37/31 |
17 | 326.6 | 223.2 | 35/29 |
18 | 345.8 | 236.4 | 11/9 |
19 | 365 | 249.5 | 21/17, 37/30 |
20 | 384.2 | 262.6 | |
21 | 403.4 | 275.8 | |
22 | 422.7 | 288.9 | 37/29 |
23 | 441.9 | 302 | |
24 | 461.1 | 315.2 | |
25 | 480.3 | 328.3 | 29/22, 33/25 |
26 | 499.5 | 341.4 | |
27 | 518.7 | 354.5 | |
28 | 537.9 | 367.7 | 15/11 |
29 | 557.1 | 380.8 | 29/21 |
30 | 576.4 | 393.9 | |
31 | 595.6 | 407.1 | 31/22 |
32 | 614.8 | 420.2 | |
33 | 634 | 433.3 | |
34 | 653.2 | 446.5 | |
35 | 672.4 | 459.6 | 31/21 |
36 | 691.6 | 472.7 | |
37 | 710.8 | 485.9 | |
38 | 730 | 499 | 29/19 |
39 | 749.3 | 512.1 | |
40 | 768.5 | 525.3 | 39/25 |
41 | 787.7 | 538.4 | |
42 | 806.9 | 551.5 | 43/27 |
43 | 826.1 | 564.6 | 29/18 |
44 | 845.3 | 577.8 | 31/19 |
45 | 864.5 | 590.9 | |
46 | 883.7 | 604 | 5/3 |
47 | 902.9 | 617.2 | |
48 | 922.2 | 630.3 | 29/17 |
49 | 941.4 | 643.4 | 31/18, 43/25 |
50 | 960.6 | 656.6 | |
51 | 979.8 | 669.7 | 37/21 |
52 | 999 | 682.8 | 41/23 |
53 | 1018.2 | 696 | 9/5 |
54 | 1037.4 | 709.1 | |
55 | 1056.6 | 722.2 | 35/19 |
56 | 1075.9 | 735.4 | |
57 | 1095.1 | 748.5 | |
58 | 1114.3 | 761.6 | |
59 | 1133.5 | 774.7 | 25/13 |
60 | 1152.7 | 787.9 | 35/18, 37/19 |
61 | 1171.9 | 801 | |
62 | 1191.1 | 814.1 | |
63 | 1210.3 | 827.3 | |
64 | 1229.5 | 840.4 | |
65 | 1248.8 | 853.5 | 35/17, 37/18 |
66 | 1268 | 866.7 | |
67 | 1287.2 | 879.8 | |
68 | 1306.4 | 892.9 | |
69 | 1325.6 | 906.1 | |
70 | 1344.8 | 919.2 | 37/17 |
71 | 1364 | 932.3 | 11/5 |
72 | 1383.2 | 945.5 | |
73 | 1402.5 | 958.6 | |
74 | 1421.7 | 971.7 | 25/11 |
75 | 1440.9 | 984.8 | |
76 | 1460.1 | 998 | |
77 | 1479.3 | 1011.1 | |
78 | 1498.5 | 1024.2 | |
79 | 1517.7 | 1037.4 | |
80 | 1536.9 | 1050.5 | 17/7 |
81 | 1556.1 | 1063.6 | 27/11 |
82 | 1575.4 | 1076.8 | |
83 | 1594.6 | 1089.9 | |
84 | 1613.8 | 1103 | 33/13 |
85 | 1633 | 1116.2 | 18/7 |
86 | 1652.2 | 1129.3 | 13/5 |
87 | 1671.4 | 1142.4 | |
88 | 1690.6 | 1155.6 | |
89 | 1709.8 | 1168.7 | |
90 | 1729.1 | 1181.8 | 19/7 |
91 | 1748.3 | 1194.9 | |
92 | 1767.5 | 1208.1 | 25/9 |
93 | 1786.7 | 1221.2 | |
94 | 1805.9 | 1234.3 | |
95 | 1825.1 | 1247.5 | 43/15 |
96 | 1844.3 | 1260.6 | 29/10 |
97 | 1863.5 | 1273.7 | |
98 | 1882.7 | 1286.9 | |
99 | 1902 | 1300 | 3/1 |
Harmonics
Harmonic | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | -8.88 | +0.00 | +1.46 | -0.62 | -8.88 | -6.78 | -7.42 | +0.00 | -9.50 | -1.60 | +1.46 |
Relative (%) | -46.2 | +0.0 | +7.6 | -3.2 | -46.2 | -35.3 | -38.6 | +0.0 | -49.4 | -8.3 | +7.6 | |
Steps (reduced) |
62 (62) |
99 (0) |
125 (26) |
145 (46) |
161 (62) |
175 (76) |
187 (88) |
198 (0) |
207 (9) |
216 (18) |
224 (26) |
Harmonic | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | -2.63 | +3.55 | -0.62 | +2.92 | -5.98 | -8.88 | -6.42 | +0.84 | -6.78 | +8.74 | +8.63 |
Relative (%) | -13.7 | +18.5 | -3.2 | +15.2 | -31.1 | -46.2 | -33.4 | +4.4 | -35.3 | +45.5 | +44.9 | |
Steps (reduced) |
231 (33) |
238 (40) |
244 (46) |
250 (52) |
255 (57) |
260 (62) |
265 (67) |
270 (72) |
274 (76) |
279 (81) |
283 (85) |