100edt
Jump to navigation
Jump to search
Prime factorization
22 × 52
Step size
19.0196¢
Octave
63\100edt (1198.23¢)
Consistency limit
8
Distinct consistency limit
8
This page is a stub. You can help the Xenharmonic Wiki by expanding it. |
← 99edt | 100edt | 101edt → |
100 equal divisions of the tritave, perfect twelfth, or 3rd harmonic (abbreviated 100edt or 100ed3), is a nonoctave tuning system that divides the interval of 3/1 into 100 equal parts of about 19 ¢ each. Each step represents a frequency ratio of 31/100, or the 100th root of 3.
Intervals
Steps | Cents | Approximate ratios |
---|---|---|
0 | 0 | 1/1 |
1 | 19.02 | |
2 | 38.039 | 44/43, 45/44 |
3 | 57.059 | |
4 | 76.078 | 23/22, 24/23 |
5 | 95.098 | 19/18 |
6 | 114.117 | 16/15, 31/29 |
7 | 133.137 | 41/38 |
8 | 152.156 | 12/11 |
9 | 171.176 | 21/19, 43/39 |
10 | 190.196 | 19/17 |
11 | 209.215 | 44/39 |
12 | 228.235 | |
13 | 247.254 | 15/13 |
14 | 266.274 | 7/6 |
15 | 285.293 | 33/28 |
16 | 304.313 | 37/31 |
17 | 323.332 | 41/34 |
18 | 342.352 | 28/23, 39/32 |
19 | 361.371 | 16/13 |
20 | 380.391 | |
21 | 399.411 | 34/27 |
22 | 418.43 | 14/11 |
23 | 437.45 | 9/7 |
24 | 456.469 | 13/10, 43/33 |
25 | 475.489 | |
26 | 494.508 | |
27 | 513.528 | 35/26, 43/32 |
28 | 532.547 | |
29 | 551.567 | 11/8 |
30 | 570.587 | 32/23 |
31 | 589.606 | 38/27, 45/32 |
32 | 608.626 | 27/19 |
33 | 627.645 | 23/16 |
34 | 646.665 | 16/11 |
35 | 665.684 | |
36 | 684.704 | |
37 | 703.723 | 3/2 |
38 | 722.743 | 41/27 |
39 | 741.762 | 23/15, 43/28 |
40 | 760.782 | |
41 | 779.802 | |
42 | 798.821 | 27/17 |
43 | 817.841 | |
44 | 836.86 | |
45 | 855.88 | |
46 | 874.899 | |
47 | 893.919 | |
48 | 912.938 | 22/13, 39/23 |
49 | 931.958 | 12/7 |
50 | 950.978 | 26/15, 45/26 |
51 | 969.997 | 7/4 |
52 | 989.017 | 23/13, 39/22 |
53 | 1008.036 | 34/19, 43/24 |
54 | 1027.056 | 38/21 |
55 | 1046.075 | |
56 | 1065.095 | |
57 | 1084.114 | 43/23 |
58 | 1103.134 | 17/9 |
59 | 1122.153 | 44/23 |
60 | 1141.173 | |
61 | 1160.193 | 41/21, 43/22, 45/23 |
62 | 1179.212 | |
63 | 1198.232 | 2/1 |
64 | 1217.251 | |
65 | 1236.271 | |
66 | 1255.29 | 33/16 |
67 | 1274.31 | |
68 | 1293.329 | 19/9 |
69 | 1312.349 | 32/15 |
70 | 1331.369 | 41/19 |
71 | 1350.388 | 24/11 |
72 | 1369.408 | |
73 | 1388.427 | |
74 | 1407.447 | |
75 | 1426.466 | 41/18 |
76 | 1445.486 | 30/13 |
77 | 1464.505 | 7/3 |
78 | 1483.525 | 33/14 |
79 | 1502.544 | |
80 | 1521.564 | |
81 | 1540.584 | 39/16 |
82 | 1559.603 | 32/13 |
83 | 1578.623 | |
84 | 1597.642 | |
85 | 1616.662 | 28/11 |
86 | 1635.681 | 18/7 |
87 | 1654.701 | 13/5 |
88 | 1673.72 | |
89 | 1692.74 | |
90 | 1711.76 | 43/16 |
91 | 1730.779 | 19/7 |
92 | 1749.799 | 11/4 |
93 | 1768.818 | |
94 | 1787.838 | 45/16 |
95 | 1806.857 | |
96 | 1825.877 | 23/8 |
97 | 1844.896 | |
98 | 1863.916 | 44/15 |
99 | 1882.935 | |
100 | 1901.955 | 3/1 |
Harmonics
Harmonic | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | -1.77 | +0.00 | -3.54 | -9.46 | -1.77 | -2.37 | -5.31 | +0.00 | +7.79 | -5.06 | -3.54 |
Relative (%) | -9.3 | +0.0 | -18.6 | -49.7 | -9.3 | -12.4 | -27.9 | +0.0 | +41.0 | -26.6 | -18.6 | |
Steps (reduced) |
63 (63) |
100 (0) |
126 (26) |
146 (46) |
163 (63) |
177 (77) |
189 (89) |
200 (0) |
210 (10) |
218 (18) |
226 (26) |
Harmonic | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | -8.97 | -4.13 | -9.46 | -7.07 | +2.09 | -1.77 | -0.27 | +6.02 | -2.37 | -6.82 | -7.70 |
Relative (%) | -47.2 | -21.7 | -49.7 | -37.2 | +11.0 | -9.3 | -1.4 | +31.7 | -12.4 | -35.9 | -40.5 | |
Steps (reduced) |
233 (33) |
240 (40) |
246 (46) |
252 (52) |
258 (58) |
263 (63) |
268 (68) |
273 (73) |
277 (77) |
281 (81) |
285 (85) |