101edt
Jump to navigation
Jump to search
Prime factorization
101 (prime)
Step size
18.8312¢
Octave
64\101edt (1205.2¢)
Consistency limit
2
Distinct consistency limit
2
This page is a stub. You can help the Xenharmonic Wiki by expanding it. |
← 100edt | 101edt | 102edt → |
101 equal divisions of the tritave, perfect twelfth, or 3rd harmonic (abbreviated 101edt or 101ed3), is a nonoctave tuning system that divides the interval of 3/1 into 101 equal parts of about 18.8 ¢ each. Each step represents a frequency ratio of 31/101, or the 101st root of 3.
Intervals
Steps | Cents | Approximate Ratios |
---|---|---|
0 | 0 | 1/1 |
1 | 18.831 | |
2 | 37.662 | 44/43, 45/44 |
3 | 56.494 | 30/29, 31/30 |
4 | 75.325 | 23/22 |
5 | 94.156 | 19/18, 37/35 |
6 | 112.987 | |
7 | 131.819 | 27/25 |
8 | 150.65 | |
9 | 169.481 | 43/39 |
10 | 188.312 | 29/26, 39/35 |
11 | 207.144 | 44/39 |
12 | 225.975 | |
13 | 244.806 | |
14 | 263.637 | |
15 | 282.469 | |
16 | 301.3 | 25/21, 44/37 |
17 | 320.131 | |
18 | 338.962 | 45/37 |
19 | 357.794 | 43/35 |
20 | 376.625 | 36/29, 41/33 |
21 | 395.456 | 39/31, 44/35 |
22 | 414.287 | |
23 | 433.118 | 9/7 |
24 | 451.95 | 13/10 |
25 | 470.781 | |
26 | 489.612 | |
27 | 508.443 | |
28 | 527.275 | 19/14, 42/31 |
29 | 546.106 | 37/27 |
30 | 564.937 | 18/13, 43/31 |
31 | 583.768 | 7/5 |
32 | 602.6 | |
33 | 621.431 | 43/30 |
34 | 640.262 | 42/29 |
35 | 659.093 | 19/13 |
36 | 677.925 | 34/23, 37/25 |
37 | 696.756 | |
38 | 715.587 | |
39 | 734.418 | 29/19 |
40 | 753.25 | 17/11 |
41 | 772.081 | 39/25 |
42 | 790.912 | 30/19 |
43 | 809.743 | |
44 | 828.574 | 21/13 |
45 | 847.406 | 31/19, 44/27 |
46 | 866.237 | |
47 | 885.068 | 5/3 |
48 | 903.899 | |
49 | 922.731 | |
50 | 941.562 | 31/18 |
51 | 960.393 | |
52 | 979.224 | 37/21, 44/25 |
53 | 998.056 | |
54 | 1016.887 | 9/5 |
55 | 1035.718 | |
56 | 1054.549 | |
57 | 1073.381 | 13/7 |
58 | 1092.212 | |
59 | 1111.043 | 19/10 |
60 | 1129.874 | 25/13 |
61 | 1148.705 | 33/17 |
62 | 1167.537 | |
63 | 1186.368 | |
64 | 1205.199 | |
65 | 1224.03 | |
66 | 1242.862 | 39/19, 43/21 |
67 | 1261.693 | 29/14 |
68 | 1280.524 | 44/21 |
69 | 1299.355 | |
70 | 1318.187 | 15/7 |
71 | 1337.018 | 13/6 |
72 | 1355.849 | |
73 | 1374.68 | 31/14, 42/19 |
74 | 1393.512 | |
75 | 1412.343 | 43/19 |
76 | 1431.174 | |
77 | 1450.005 | 30/13 |
78 | 1468.837 | 7/3 |
79 | 1487.668 | |
80 | 1506.499 | 31/13, 43/18 |
81 | 1525.33 | 29/12, 41/17 |
82 | 1544.161 | |
83 | 1562.993 | 37/15 |
84 | 1581.824 | |
85 | 1600.655 | |
86 | 1619.486 | |
87 | 1638.318 | |
88 | 1657.149 | |
89 | 1675.98 | |
90 | 1694.811 | |
91 | 1713.643 | 35/13 |
92 | 1732.474 | |
93 | 1751.305 | |
94 | 1770.136 | 25/9 |
95 | 1788.968 | |
96 | 1807.799 | |
97 | 1826.63 | |
98 | 1845.461 | 29/10 |
99 | 1864.293 | 44/15 |
100 | 1883.124 | |
101 | 1901.955 | 3/1 |
Harmonics
Harmonic | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | +5.20 | +0.00 | -8.43 | +0.71 | +5.20 | +1.97 | -3.23 | +0.00 | +5.91 | -8.45 | -8.43 |
Relative (%) | +27.6 | +0.0 | -44.8 | +3.8 | +27.6 | +10.4 | -17.2 | +0.0 | +31.4 | -44.8 | -44.8 | |
Steps (reduced) |
64 (64) |
101 (0) |
127 (26) |
148 (47) |
165 (64) |
179 (78) |
191 (90) |
202 (0) |
212 (10) |
220 (18) |
228 (26) |
Harmonic | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | +3.64 | +7.16 | +0.71 | +1.97 | -8.83 | +5.20 | +5.75 | -7.72 | +1.97 | -3.25 | -4.88 |
Relative (%) | +19.4 | +38.0 | +3.8 | +10.4 | -46.9 | +27.6 | +30.5 | -41.0 | +10.4 | -17.2 | -25.9 | |
Steps (reduced) |
236 (34) |
243 (41) |
249 (47) |
255 (53) |
260 (58) |
266 (64) |
271 (69) |
275 (73) |
280 (78) |
284 (82) |
288 (86) |