102edt
Jump to navigation
Jump to search
Prime factorization
2 × 3 × 17
Step size
18.6466¢
Octave
64\102edt (1193.38¢) (→32\51edt)
Consistency limit
2
Distinct consistency limit
2
This page is a stub. You can help the Xenharmonic Wiki by expanding it. |
← 101edt | 102edt | 103edt → |
102 equal divisions of the tritave, perfect twelfth, or 3rd harmonic (abbreviated 102edt or 102ed3), is a nonoctave tuning system that divides the interval of 3/1 into 102 equal parts of about 18.6 ¢ each. Each step represents a frequency ratio of 31/102, or the 102nd root of 3.
Intervals
Steps | Cents | Approximate Ratios |
---|---|---|
0 | 0 | 1/1 |
1 | 18.647 | |
2 | 37.293 | 45/44 |
3 | 55.94 | |
4 | 74.586 | 23/22 |
5 | 93.233 | 19/18, 39/37 |
6 | 111.88 | |
7 | 130.526 | 14/13 |
8 | 149.173 | |
9 | 167.82 | 43/39 |
10 | 186.466 | 39/35 |
11 | 205.113 | |
12 | 223.759 | 33/29 |
13 | 242.406 | |
14 | 261.053 | 43/37 |
15 | 279.699 | 27/23 |
16 | 298.346 | 44/37 |
17 | 316.993 | 6/5 |
18 | 335.639 | 17/14 |
19 | 354.286 | 27/22, 43/35 |
20 | 372.932 | |
21 | 391.579 | |
22 | 410.226 | 19/15 |
23 | 428.872 | |
24 | 447.519 | 22/17, 35/27 |
25 | 466.165 | 17/13 |
26 | 484.812 | 37/28, 41/31, 45/34 |
27 | 503.459 | |
28 | 522.105 | 23/17 |
29 | 540.752 | 26/19 |
30 | 559.399 | 29/21 |
31 | 578.045 | |
32 | 596.692 | |
33 | 615.338 | |
34 | 633.985 | |
35 | 652.632 | |
36 | 671.278 | 28/19 |
37 | 689.925 | |
38 | 708.571 | |
39 | 727.218 | 35/23, 38/25 |
40 | 745.865 | |
41 | 764.511 | 14/9 |
42 | 783.158 | 11/7 |
43 | 801.805 | 27/17, 35/22 |
44 | 820.451 | 45/28 |
45 | 839.098 | |
46 | 857.744 | 23/14 |
47 | 876.391 | |
48 | 895.038 | |
49 | 913.684 | 39/23 |
50 | 932.331 | |
51 | 950.978 | 26/15, 45/26 |
52 | 969.624 | |
53 | 988.271 | 23/13 |
54 | 1006.917 | 34/19 |
55 | 1025.564 | |
56 | 1044.211 | 42/23 |
57 | 1062.857 | |
58 | 1081.504 | 28/15, 43/23 |
59 | 1100.15 | 17/9 |
60 | 1118.797 | 21/11 |
61 | 1137.444 | 27/14 |
62 | 1156.09 | 37/19, 41/21 |
63 | 1174.737 | |
64 | 1193.384 | |
65 | 1212.03 | |
66 | 1230.677 | |
67 | 1249.323 | 35/17, 37/18 |
68 | 1267.97 | |
69 | 1286.617 | |
70 | 1305.263 | |
71 | 1323.91 | |
72 | 1342.556 | |
73 | 1361.203 | |
74 | 1379.85 | |
75 | 1398.496 | |
76 | 1417.143 | 34/15 |
77 | 1435.79 | 39/17 |
78 | 1454.436 | 44/19 |
79 | 1473.083 | |
80 | 1491.729 | 45/19 |
81 | 1510.376 | |
82 | 1529.023 | |
83 | 1547.669 | 22/9 |
84 | 1566.316 | 42/17 |
85 | 1584.963 | 5/2 |
86 | 1603.609 | |
87 | 1622.256 | 23/9 |
88 | 1640.902 | |
89 | 1659.549 | |
90 | 1678.196 | 29/11 |
91 | 1696.842 | |
92 | 1715.489 | 35/13 |
93 | 1734.135 | |
94 | 1752.782 | |
95 | 1771.429 | 39/14 |
96 | 1790.075 | |
97 | 1808.722 | 37/13 |
98 | 1827.369 | |
99 | 1846.015 | |
100 | 1864.662 | 44/15 |
101 | 1883.308 | |
102 | 1901.955 | 3/1 |
Harmonics
Harmonic | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | -6.62 | +0.00 | +5.41 | -7.97 | -6.62 | +6.21 | -1.20 | +0.00 | +4.06 | +6.88 | +5.41 |
Relative (%) | -35.5 | +0.0 | +29.0 | -42.7 | -35.5 | +33.3 | -6.5 | +0.0 | +21.8 | +36.9 | +29.0 | |
Steps (reduced) |
64 (64) |
102 (0) |
129 (27) |
149 (47) |
166 (64) |
181 (79) |
193 (91) |
204 (0) |
214 (10) |
223 (19) |
231 (27) |
Harmonic | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | -2.63 | -0.40 | -7.97 | -7.82 | -0.89 | -6.62 | -6.99 | -2.55 | +6.21 | +0.26 | -2.11 |
Relative (%) | -14.1 | -2.2 | -42.7 | -41.9 | -4.8 | -35.5 | -37.5 | -13.7 | +33.3 | +1.4 | -11.3 | |
Steps (reduced) |
238 (34) |
245 (41) |
251 (47) |
257 (53) |
263 (59) |
268 (64) |
273 (69) |
278 (74) |
283 (79) |
287 (83) |
291 (87) |