103edt

From Xenharmonic Wiki
Jump to navigation Jump to search
Icon-Stub.png This page is a stub. You can help the Xenharmonic Wiki by expanding it.
← 102edt 103edt 104edt →
Prime factorization 103 (prime)
Step size 18.4656¢ 
Octave 65\103edt (1200.26¢)
Consistency limit 5
Distinct consistency limit 5

103 equal divisions of the tritave, perfect twelfth, or 3rd harmonic (abbreviated 103edt or 103ed3), is a nonoctave tuning system that divides the interval of 3/1 into 103 equal parts of about 18.5 ¢ each. Each step represents a frequency ratio of 31/103, or the 103rd root of 3.

Intervals

Steps Cents Hekts Approximate ratios
0 0 0 1/1
1 18.5 12.6
2 36.9 25.2 45/44
3 55.4 37.9 31/30, 32/31, 33/32
4 73.9 50.5 24/23
5 92.3 63.1 19/18
6 110.8 75.7 16/15
7 129.3 88.3 14/13, 41/38
8 147.7 101 37/34
9 166.2 113.6 11/10
10 184.7 126.2 10/9
11 203.1 138.8 9/8
12 221.6 151.5 25/22, 33/29
13 240.1 164.1 23/20, 31/27
14 258.5 176.7 29/25, 36/31, 43/37
15 277 189.3 27/23, 34/29
16 295.4 201.9 19/16, 32/27
17 313.9 214.6 6/5
18 332.4 227.2 23/19, 40/33
19 350.8 239.8 38/31
20 369.3 252.4 26/21
21 387.8 265 5/4
22 406.2 277.7 24/19, 43/34
23 424.7 290.3 23/18
24 443.2 302.9 31/24, 40/31
25 461.6 315.5 30/23
26 480.1 328.2 29/22, 33/25
27 498.6 340.8 4/3
28 517 353.4 31/23
29 535.5 366 15/11
30 554 378.6
31 572.4 391.3 32/23, 39/28
32 590.9 403.9 38/27, 45/32
33 609.4 416.5 27/19
34 627.8 429.1 23/16
35 646.3 441.7 16/11, 45/31
36 664.8 454.4 22/15
37 683.2 467 43/29
38 701.7 479.6 3/2
39 720.2 492.2 44/29
40 738.6 504.9 23/15
41 757.1 517.5 31/20
42 775.6 530.1 36/23
43 794 542.7 19/12
44 812.5 555.3 8/5
45 831 568 21/13
46 849.4 580.6 31/19
47 867.9 593.2 33/20, 38/23
48 886.3 605.8 5/3
49 904.8 618.4 27/16, 32/19
50 923.3 631.1 29/17
51 941.7 643.7 31/18
52 960.2 656.3 40/23
53 978.7 668.9 44/25
54 997.1 681.6 16/9
55 1015.6 694.2 9/5
56 1034.1 706.8 20/11
57 1052.5 719.4
58 1071 732 13/7
59 1089.5 744.7 15/8
60 1107.9 757.3 36/19
61 1126.4 769.9 23/12
62 1144.9 782.5 31/16
63 1163.3 795.1 45/23
64 1181.8 807.8
65 1200.3 820.4 2/1
66 1218.7 833
67 1237.2 845.6 45/22
68 1255.7 858.3 31/15, 33/16
69 1274.1 870.9
70 1292.6 883.5 19/9
71 1311.1 896.1 32/15
72 1329.5 908.7 28/13, 41/19
73 1348 921.4 37/17
74 1366.5 934 11/5
75 1384.9 946.6
76 1403.4 959.2 9/4
77 1421.8 971.8 25/11
78 1440.3 984.5 23/10
79 1458.8 997.1
80 1477.2 1009.7
81 1495.7 1022.3 19/8
82 1514.2 1035 12/5
83 1532.6 1047.6
84 1551.1 1060.2
85 1569.6 1072.8
86 1588 1085.4 5/2
87 1606.5 1098.1 43/17
88 1625 1110.7 23/9
89 1643.4 1123.3 31/12
90 1661.9 1135.9
91 1680.4 1148.5 29/11
92 1698.8 1161.2 8/3
93 1717.3 1173.8 27/10
94 1735.8 1186.4 30/11
95 1754.2 1199
96 1772.7 1211.7 39/14
97 1791.2 1224.3 45/16
98 1809.6 1236.9
99 1828.1 1249.5 23/8
100 1846.6 1262.1 32/11
101 1865 1274.8 44/15
102 1883.5 1287.4
103 1902 1300 3/1

Harmonics

Approximation of harmonics in 103edt
Harmonic 2 3 4 5 6 7 8 9 10 11 12
Error Absolute (¢) +0.26 +0.00 +0.53 +1.99 +0.26 -8.09 +0.79 +0.00 +2.25 +3.44 +0.53
Relative (%) +1.4 +0.0 +2.8 +10.8 +1.4 -43.8 +4.3 +0.0 +12.2 +18.6 +2.8
Steps
(reduced)
65
(65)
103
(0)
130
(27)
151
(48)
168
(65)
182
(79)
195
(92)
206
(0)
216
(10)
225
(19)
233
(27)
Approximation of harmonics in 103edt
Harmonic 13 14 15 16 17 18 19 20 21 22 23
Error Absolute (¢) -8.79 -7.83 +1.99 +1.05 +6.89 +0.26 -1.01 +2.51 -8.09 +3.70 +0.61
Relative (%) -47.6 -42.4 +10.8 +5.7 +37.3 +1.4 -5.5 +13.6 -43.8 +20.0 +3.3
Steps
(reduced)
240
(34)
247
(41)
254
(48)
260
(54)
266
(60)
271
(65)
276
(70)
281
(75)
285
(79)
290
(84)
294
(88)