103edt
Jump to navigation
Jump to search
Prime factorization
103 (prime)
Step size
18.4656¢
Octave
65\103edt (1200.26¢)
Consistency limit
5
Distinct consistency limit
5
This page is a stub. You can help the Xenharmonic Wiki by expanding it. |
← 102edt | 103edt | 104edt → |
103 equal divisions of the tritave, perfect twelfth, or 3rd harmonic (abbreviated 103edt or 103ed3), is a nonoctave tuning system that divides the interval of 3/1 into 103 equal parts of about 18.5 ¢ each. Each step represents a frequency ratio of 31/103, or the 103rd root of 3.
Intervals
Steps | Cents | Approximate Ratios |
---|---|---|
0 | 0 | 1/1 |
1 | 18.466 | |
2 | 36.931 | 45/44 |
3 | 55.397 | 31/30, 32/31, 33/32 |
4 | 73.862 | 24/23 |
5 | 92.328 | 19/18 |
6 | 110.793 | 16/15 |
7 | 129.259 | 14/13, 41/38 |
8 | 147.725 | 37/34 |
9 | 166.19 | 11/10 |
10 | 184.656 | 10/9 |
11 | 203.121 | 9/8 |
12 | 221.587 | 25/22, 33/29 |
13 | 240.053 | 23/20, 31/27 |
14 | 258.518 | 29/25, 36/31, 43/37 |
15 | 276.984 | 27/23, 34/29 |
16 | 295.449 | 19/16, 32/27 |
17 | 313.915 | 6/5 |
18 | 332.38 | 23/19, 40/33 |
19 | 350.846 | 38/31 |
20 | 369.312 | 26/21 |
21 | 387.777 | 5/4 |
22 | 406.243 | 24/19, 43/34 |
23 | 424.708 | 23/18 |
24 | 443.174 | 31/24, 40/31 |
25 | 461.64 | 30/23 |
26 | 480.105 | 29/22, 33/25 |
27 | 498.571 | 4/3 |
28 | 517.036 | 31/23 |
29 | 535.502 | 15/11 |
30 | 553.967 | |
31 | 572.433 | 32/23, 39/28 |
32 | 590.899 | 38/27, 45/32 |
33 | 609.364 | 27/19 |
34 | 627.83 | 23/16 |
35 | 646.295 | 16/11, 45/31 |
36 | 664.761 | 22/15 |
37 | 683.227 | 43/29 |
38 | 701.692 | 3/2 |
39 | 720.158 | 44/29 |
40 | 738.623 | 23/15 |
41 | 757.089 | 31/20 |
42 | 775.554 | 36/23 |
43 | 794.02 | 19/12 |
44 | 812.486 | 8/5 |
45 | 830.951 | 21/13 |
46 | 849.417 | 31/19 |
47 | 867.882 | 33/20, 38/23 |
48 | 886.348 | 5/3 |
49 | 904.814 | 27/16, 32/19 |
50 | 923.279 | 29/17 |
51 | 941.745 | 31/18 |
52 | 960.21 | 40/23 |
53 | 978.676 | 44/25 |
54 | 997.141 | 16/9 |
55 | 1015.607 | 9/5 |
56 | 1034.073 | 20/11 |
57 | 1052.538 | |
58 | 1071.004 | 13/7 |
59 | 1089.469 | 15/8 |
60 | 1107.935 | 36/19 |
61 | 1126.401 | 23/12 |
62 | 1144.866 | 31/16 |
63 | 1163.332 | 45/23 |
64 | 1181.797 | |
65 | 1200.263 | 2/1 |
66 | 1218.728 | |
67 | 1237.194 | 45/22 |
68 | 1255.66 | 31/15, 33/16 |
69 | 1274.125 | |
70 | 1292.591 | 19/9 |
71 | 1311.056 | 32/15 |
72 | 1329.522 | 28/13, 41/19 |
73 | 1347.988 | 37/17 |
74 | 1366.453 | 11/5 |
75 | 1384.919 | |
76 | 1403.384 | 9/4 |
77 | 1421.85 | 25/11 |
78 | 1440.315 | 23/10 |
79 | 1458.781 | |
80 | 1477.247 | |
81 | 1495.712 | 19/8 |
82 | 1514.178 | 12/5 |
83 | 1532.643 | |
84 | 1551.109 | |
85 | 1569.575 | |
86 | 1588.04 | 5/2 |
87 | 1606.506 | 43/17 |
88 | 1624.971 | 23/9 |
89 | 1643.437 | 31/12 |
90 | 1661.902 | |
91 | 1680.368 | 29/11 |
92 | 1698.834 | 8/3 |
93 | 1717.299 | 27/10 |
94 | 1735.765 | 30/11 |
95 | 1754.23 | |
96 | 1772.696 | 39/14 |
97 | 1791.162 | 45/16 |
98 | 1809.627 | |
99 | 1828.093 | 23/8 |
100 | 1846.558 | 32/11 |
101 | 1865.024 | 44/15 |
102 | 1883.489 | |
103 | 1901.955 | 3/1 |
Harmonics
Harmonic | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | +0.26 | +0.00 | +0.53 | +1.99 | +0.26 | -8.09 | +0.79 | +0.00 | +2.25 | +3.44 | +0.53 |
Relative (%) | +1.4 | +0.0 | +2.8 | +10.8 | +1.4 | -43.8 | +4.3 | +0.0 | +12.2 | +18.6 | +2.8 | |
Steps (reduced) |
65 (65) |
103 (0) |
130 (27) |
151 (48) |
168 (65) |
182 (79) |
195 (92) |
206 (0) |
216 (10) |
225 (19) |
233 (27) |
Harmonic | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | -8.79 | -7.83 | +1.99 | +1.05 | +6.89 | +0.26 | -1.01 | +2.51 | -8.09 | +3.70 | +0.61 |
Relative (%) | -47.6 | -42.4 | +10.8 | +5.7 | +37.3 | +1.4 | -5.5 | +13.6 | -43.8 | +20.0 | +3.3 | |
Steps (reduced) |
240 (34) |
247 (41) |
254 (48) |
260 (54) |
266 (60) |
271 (65) |
276 (70) |
281 (75) |
285 (79) |
290 (84) |
294 (88) |