104edt
Jump to navigation
Jump to search
Prime factorization
23 × 13
Step size
18.288¢
Octave
66\104edt (1207.01¢) (→33\52edt)
Consistency limit
2
Distinct consistency limit
2
This page is a stub. You can help the Xenharmonic Wiki by expanding it. |
← 103edt | 104edt | 105edt → |
104 equal divisions of the tritave, perfect twelfth, or 3rd harmonic (abbreviated 104edt or 104ed3), is a nonoctave tuning system that divides the interval of 3/1 into 104 equal parts of about 18.3 ¢ each. Each step represents a frequency ratio of 31/104, or the 104th root of 3.
Intervals
Steps | Cents | Approximate ratios |
---|---|---|
0 | 0 | 1/1 |
1 | 18.288 | |
2 | 36.576 | |
3 | 54.864 | 31/30 |
4 | 73.152 | |
5 | 91.44 | 19/18, 39/37 |
6 | 109.728 | 33/31 |
7 | 128.016 | 14/13 |
8 | 146.304 | 37/34 |
9 | 164.592 | 11/10 |
10 | 182.88 | 10/9 |
11 | 201.168 | 46/41 |
12 | 219.456 | 42/37 |
13 | 237.744 | 31/27, 39/34 |
14 | 256.032 | 22/19 |
15 | 274.32 | 34/29 |
16 | 292.608 | |
17 | 310.896 | |
18 | 329.185 | 23/19 |
19 | 347.473 | 11/9 |
20 | 365.761 | 21/17 |
21 | 384.049 | |
22 | 402.337 | 29/23 |
23 | 420.625 | 37/29 |
24 | 438.913 | |
25 | 457.201 | 43/33 |
26 | 475.489 | |
27 | 493.777 | |
28 | 512.065 | 39/29 |
29 | 530.353 | 19/14 |
30 | 548.641 | |
31 | 566.929 | 43/31 |
32 | 585.217 | |
33 | 603.505 | |
34 | 621.793 | 43/30 |
35 | 640.081 | 42/29 |
36 | 658.369 | 19/13, 41/28 |
37 | 676.657 | 34/23 |
38 | 694.945 | |
39 | 713.233 | |
40 | 731.521 | 29/19 |
41 | 749.809 | |
42 | 768.097 | |
43 | 786.385 | 41/26 |
44 | 804.673 | 43/27 |
45 | 822.961 | 37/23 |
46 | 841.249 | |
47 | 859.537 | 23/14 |
48 | 877.825 | |
49 | 896.113 | |
50 | 914.401 | 39/23 |
51 | 932.689 | |
52 | 950.978 | |
53 | 969.266 | |
54 | 987.554 | 23/13 |
55 | 1005.842 | 34/19 |
56 | 1024.13 | |
57 | 1042.418 | 31/17, 42/23 |
58 | 1060.706 | |
59 | 1078.994 | 41/22 |
60 | 1097.282 | |
61 | 1115.57 | |
62 | 1133.858 | |
63 | 1152.146 | 37/19 |
64 | 1170.434 | |
65 | 1188.722 | |
66 | 1207.01 | |
67 | 1225.298 | |
68 | 1243.586 | 39/19, 41/20 |
69 | 1261.874 | 29/14 |
70 | 1280.162 | |
71 | 1298.45 | |
72 | 1316.738 | |
73 | 1335.026 | |
74 | 1353.314 | |
75 | 1371.602 | 42/19 |
76 | 1389.89 | 29/13 |
77 | 1408.178 | |
78 | 1426.466 | 41/18 |
79 | 1444.754 | |
80 | 1463.042 | |
81 | 1481.33 | |
82 | 1499.618 | |
83 | 1517.906 | |
84 | 1536.194 | 17/7 |
85 | 1554.482 | 27/11 |
86 | 1572.77 | |
87 | 1591.059 | |
88 | 1609.347 | |
89 | 1627.635 | |
90 | 1645.923 | |
91 | 1664.211 | 34/13 |
92 | 1682.499 | 37/14 |
93 | 1700.787 | |
94 | 1719.075 | 27/10 |
95 | 1737.363 | 30/11 |
96 | 1755.651 | |
97 | 1773.939 | 39/14 |
98 | 1792.227 | 31/11 |
99 | 1810.515 | 37/13 |
100 | 1828.803 | |
101 | 1847.091 | |
102 | 1865.379 | |
103 | 1883.667 | |
104 | 1901.955 | 3/1 |
Harmonics
Harmonic | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | +7.01 | +0.00 | -4.27 | -6.53 | +7.01 | -3.83 | +2.74 | +0.00 | +0.48 | +0.06 | -4.27 |
Relative (%) | +38.3 | +0.0 | -23.3 | -35.7 | +38.3 | -20.9 | +15.0 | +0.0 | +2.6 | +0.4 | -23.3 | |
Steps (reduced) |
66 (66) |
104 (0) |
131 (27) |
152 (48) |
170 (66) |
184 (80) |
197 (93) |
208 (0) |
218 (10) |
227 (19) |
235 (27) |
Harmonic | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | +3.46 | +3.18 | -6.53 | -8.54 | -3.76 | +7.01 | +4.85 | +7.49 | -3.83 | +7.07 | +3.27 |
Relative (%) | +18.9 | +17.4 | -35.7 | -46.7 | -20.6 | +38.3 | +26.5 | +40.9 | -20.9 | +38.7 | +17.9 | |
Steps (reduced) |
243 (35) |
250 (42) |
256 (48) |
262 (54) |
268 (60) |
274 (66) |
279 (71) |
284 (76) |
288 (80) |
293 (85) |
297 (89) |