104edt
Jump to navigation
Jump to search
Prime factorization
23 × 13
Step size
18.288¢
Octave
66\104edt (1207.01¢) (→33\52edt)
Consistency limit
2
Distinct consistency limit
2
This page is a stub. You can help the Xenharmonic Wiki by expanding it. |
← 103edt | 104edt | 105edt → |
104 equal divisions of the tritave, perfect twelfth, or 3rd harmonic (abbreviated 104edt or 104ed3), is a nonoctave tuning system that divides the interval of 3/1 into 104 equal parts of about 18.3 ¢ each. Each step represents a frequency ratio of 31/104, or the 104th root of 3.
Intervals
Steps | Cents | Approximate ratios |
---|---|---|
0 | 0 | 1/1 |
1 | 18.3 | |
2 | 36.6 | |
3 | 54.9 | 31/30 |
4 | 73.2 | |
5 | 91.4 | 19/18, 39/37 |
6 | 109.7 | 33/31 |
7 | 128 | 14/13 |
8 | 146.3 | 37/34 |
9 | 164.6 | 11/10 |
10 | 182.9 | 10/9 |
11 | 201.2 | 46/41 |
12 | 219.5 | 42/37 |
13 | 237.7 | 31/27, 39/34 |
14 | 256 | 22/19 |
15 | 274.3 | 34/29 |
16 | 292.6 | |
17 | 310.9 | |
18 | 329.2 | 23/19 |
19 | 347.5 | 11/9 |
20 | 365.8 | 21/17 |
21 | 384 | |
22 | 402.3 | 29/23 |
23 | 420.6 | 37/29 |
24 | 438.9 | |
25 | 457.2 | 43/33 |
26 | 475.5 | |
27 | 493.8 | |
28 | 512.1 | 39/29 |
29 | 530.4 | 19/14 |
30 | 548.6 | |
31 | 566.9 | 43/31 |
32 | 585.2 | |
33 | 603.5 | |
34 | 621.8 | 43/30 |
35 | 640.1 | 42/29 |
36 | 658.4 | 19/13, 41/28 |
37 | 676.7 | 34/23 |
38 | 694.9 | |
39 | 713.2 | |
40 | 731.5 | 29/19 |
41 | 749.8 | |
42 | 768.1 | |
43 | 786.4 | 41/26 |
44 | 804.7 | 43/27 |
45 | 823 | 37/23 |
46 | 841.2 | |
47 | 859.5 | 23/14 |
48 | 877.8 | |
49 | 896.1 | |
50 | 914.4 | 39/23 |
51 | 932.7 | |
52 | 951 | |
53 | 969.3 | |
54 | 987.6 | 23/13 |
55 | 1005.8 | 34/19 |
56 | 1024.1 | |
57 | 1042.4 | 31/17, 42/23 |
58 | 1060.7 | |
59 | 1079 | 41/22 |
60 | 1097.3 | |
61 | 1115.6 | |
62 | 1133.9 | |
63 | 1152.1 | 37/19 |
64 | 1170.4 | |
65 | 1188.7 | |
66 | 1207 | |
67 | 1225.3 | |
68 | 1243.6 | 39/19, 41/20 |
69 | 1261.9 | 29/14 |
70 | 1280.2 | |
71 | 1298.5 | |
72 | 1316.7 | |
73 | 1335 | |
74 | 1353.3 | |
75 | 1371.6 | 42/19 |
76 | 1389.9 | 29/13 |
77 | 1408.2 | |
78 | 1426.5 | 41/18 |
79 | 1444.8 | |
80 | 1463 | |
81 | 1481.3 | |
82 | 1499.6 | |
83 | 1517.9 | |
84 | 1536.2 | 17/7 |
85 | 1554.5 | 27/11 |
86 | 1572.8 | |
87 | 1591.1 | |
88 | 1609.3 | |
89 | 1627.6 | |
90 | 1645.9 | |
91 | 1664.2 | 34/13 |
92 | 1682.5 | 37/14 |
93 | 1700.8 | |
94 | 1719.1 | 27/10 |
95 | 1737.4 | 30/11 |
96 | 1755.7 | |
97 | 1773.9 | 39/14 |
98 | 1792.2 | 31/11 |
99 | 1810.5 | 37/13 |
100 | 1828.8 | |
101 | 1847.1 | |
102 | 1865.4 | |
103 | 1883.7 | |
104 | 1902 | 3/1 |
Harmonics
Harmonic | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | +7.01 | +0.00 | -4.27 | -6.53 | +7.01 | -3.83 | +2.74 | +0.00 | +0.48 | +0.06 | -4.27 |
Relative (%) | +38.3 | +0.0 | -23.3 | -35.7 | +38.3 | -20.9 | +15.0 | +0.0 | +2.6 | +0.4 | -23.3 | |
Steps (reduced) |
66 (66) |
104 (0) |
131 (27) |
152 (48) |
170 (66) |
184 (80) |
197 (93) |
208 (0) |
218 (10) |
227 (19) |
235 (27) |
Harmonic | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | +3.46 | +3.18 | -6.53 | -8.54 | -3.76 | +7.01 | +4.85 | +7.49 | -3.83 | +7.07 | +3.27 |
Relative (%) | +18.9 | +17.4 | -35.7 | -46.7 | -20.6 | +38.3 | +26.5 | +40.9 | -20.9 | +38.7 | +17.9 | |
Steps (reduced) |
243 (35) |
250 (42) |
256 (48) |
262 (54) |
268 (60) |
274 (66) |
279 (71) |
284 (76) |
288 (80) |
293 (85) |
297 (89) |