105edt
Jump to navigation
Jump to search
Prime factorization
3 × 5 × 7
Step size
18.1139¢
Octave
66\105edt (1195.51¢) (→22\35edt)
Consistency limit
4
Distinct consistency limit
4
This page is a stub. You can help the Xenharmonic Wiki by expanding it. |
← 104edt | 105edt | 106edt → |
105 equal divisions of the tritave, perfect twelfth, or 3rd harmonic (abbreviated 105edt or 105ed3), is a nonoctave tuning system that divides the interval of 3/1 into 105 equal parts of about 18.1 ¢ each. Each step represents a frequency ratio of 31/105, or the 105th root of 3.
Intervals
Steps | Cents | Approximate ratios |
---|---|---|
0 | 0 | 1/1 |
1 | 18.1 | |
2 | 36.2 | 46/45 |
3 | 54.3 | |
4 | 72.5 | |
5 | 90.6 | 20/19, 39/37 |
6 | 108.7 | 33/31 |
7 | 126.8 | 14/13, 43/40 |
8 | 144.9 | 25/23, 37/34 |
9 | 163 | 11/10, 45/41 |
10 | 181.1 | 10/9 |
11 | 199.3 | 37/33, 46/41 |
12 | 217.4 | 17/15, 42/37 |
13 | 235.5 | 39/34 |
14 | 253.6 | 22/19 |
15 | 271.7 | 41/35 |
16 | 289.8 | 13/11 |
17 | 307.9 | 37/31, 43/36 |
18 | 326 | 35/29, 41/34 |
19 | 344.2 | |
20 | 362.3 | 37/30 |
21 | 380.4 | |
22 | 398.5 | 34/27, 39/31 |
23 | 416.6 | 14/11 |
24 | 434.7 | 9/7 |
25 | 452.8 | 13/10 |
26 | 471 | 46/35 |
27 | 489.1 | |
28 | 507.2 | |
29 | 525.3 | 23/17, 42/31 |
30 | 543.4 | 26/19, 37/27 |
31 | 561.5 | 18/13 |
32 | 579.6 | |
33 | 597.8 | 41/29 |
34 | 615.9 | 10/7 |
35 | 634 | |
36 | 652.1 | |
37 | 670.2 | 28/19 |
38 | 688.3 | |
39 | 706.4 | |
40 | 724.6 | 35/23, 41/27 |
41 | 742.7 | 43/28 |
42 | 760.8 | 31/20, 45/29 |
43 | 778.9 | |
44 | 797 | 19/12, 46/29 |
45 | 815.1 | |
46 | 833.2 | 34/21 |
47 | 851.4 | 18/11 |
48 | 869.5 | 43/26 |
49 | 887.6 | |
50 | 905.7 | |
51 | 923.8 | 29/17, 46/27 |
52 | 941.9 | 31/18 |
53 | 960 | |
54 | 978.1 | |
55 | 996.3 | |
56 | 1014.4 | |
57 | 1032.5 | |
58 | 1050.6 | 11/6 |
59 | 1068.7 | |
60 | 1086.8 | |
61 | 1104.9 | 36/19 |
62 | 1123.1 | |
63 | 1141.2 | 29/15 |
64 | 1159.3 | 41/21, 43/22 |
65 | 1177.4 | |
66 | 1195.5 | |
67 | 1213.6 | |
68 | 1231.7 | |
69 | 1249.9 | 35/17 |
70 | 1268 | |
71 | 1286.1 | 21/10 |
72 | 1304.2 | |
73 | 1322.3 | |
74 | 1340.4 | 13/6 |
75 | 1358.5 | 46/21 |
76 | 1376.7 | 31/14 |
77 | 1394.8 | |
78 | 1412.9 | 43/19 |
79 | 1431 | |
80 | 1449.1 | 30/13 |
81 | 1467.2 | 7/3 |
82 | 1485.3 | 33/14 |
83 | 1503.5 | 31/13 |
84 | 1521.6 | |
85 | 1539.7 | |
86 | 1557.8 | |
87 | 1575.9 | |
88 | 1594 | |
89 | 1612.1 | 33/13 |
90 | 1630.2 | |
91 | 1648.4 | |
92 | 1666.5 | 34/13 |
93 | 1684.6 | 37/14, 45/17 |
94 | 1702.7 | |
95 | 1720.8 | 27/10 |
96 | 1738.9 | 30/11, 41/15 |
97 | 1757 | |
98 | 1775.2 | 39/14 |
99 | 1793.3 | 31/11 |
100 | 1811.4 | 37/13 |
101 | 1829.5 | |
102 | 1847.6 | |
103 | 1865.7 | |
104 | 1883.8 | |
105 | 1902 | 3/1 |
Harmonics
Harmonic | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | -4.49 | +0.00 | -8.97 | +3.22 | -4.49 | +0.35 | +4.66 | +0.00 | -1.27 | -3.24 | -8.97 |
Relative (%) | -24.8 | +0.0 | -49.5 | +17.8 | -24.8 | +1.9 | +25.7 | +0.0 | -7.0 | -17.9 | -49.5 | |
Steps (reduced) |
66 (66) |
105 (0) |
132 (27) |
154 (49) |
171 (66) |
186 (81) |
199 (94) |
210 (0) |
220 (10) |
229 (19) |
237 (27) |
Harmonic | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | -2.63 | -4.13 | +3.22 | +0.17 | +3.90 | -4.49 | -7.52 | -5.75 | +0.35 | -7.73 | +5.88 |
Relative (%) | -14.5 | -22.8 | +17.8 | +1.0 | +21.5 | -24.8 | -41.5 | -31.7 | +1.9 | -42.7 | +32.5 | |
Steps (reduced) |
245 (35) |
252 (42) |
259 (49) |
265 (55) |
271 (61) |
276 (66) |
281 (71) |
286 (76) |
291 (81) |
295 (85) |
300 (90) |