105edt
Jump to navigation
Jump to search
Prime factorization
3 × 5 × 7
Step size
18.1139¢
Octave
66\105edt (1195.51¢) (→22\35edt)
Consistency limit
4
Distinct consistency limit
4
This page is a stub. You can help the Xenharmonic Wiki by expanding it. |
← 104edt | 105edt | 106edt → |
105 equal divisions of the tritave, perfect twelfth, or 3rd harmonic (abbreviated 105edt or 105ed3), is a nonoctave tuning system that divides the interval of 3/1 into 105 equal parts of about 18.1 ¢ each. Each step represents a frequency ratio of 31/105, or the 105th root of 3.
Intervals
Steps | Cents | Approximate ratios |
---|---|---|
0 | 0 | 1/1 |
1 | 18.114 | |
2 | 36.228 | 46/45 |
3 | 54.342 | |
4 | 72.455 | |
5 | 90.569 | 20/19, 39/37 |
6 | 108.683 | 33/31 |
7 | 126.797 | 14/13, 43/40 |
8 | 144.911 | 25/23, 37/34 |
9 | 163.025 | 11/10, 45/41 |
10 | 181.139 | 10/9 |
11 | 199.252 | 37/33, 46/41 |
12 | 217.366 | 17/15, 42/37 |
13 | 235.48 | 39/34 |
14 | 253.594 | 22/19 |
15 | 271.708 | 41/35 |
16 | 289.822 | 13/11 |
17 | 307.936 | 37/31, 43/36 |
18 | 326.049 | 35/29, 41/34 |
19 | 344.163 | |
20 | 362.277 | 37/30 |
21 | 380.391 | |
22 | 398.505 | 34/27, 39/31 |
23 | 416.619 | 14/11 |
24 | 434.733 | 9/7 |
25 | 452.846 | 13/10 |
26 | 470.96 | 46/35 |
27 | 489.074 | |
28 | 507.188 | |
29 | 525.302 | 23/17, 42/31 |
30 | 543.416 | 26/19, 37/27 |
31 | 561.53 | 18/13 |
32 | 579.643 | |
33 | 597.757 | 41/29 |
34 | 615.871 | 10/7 |
35 | 633.985 | |
36 | 652.099 | |
37 | 670.213 | 28/19 |
38 | 688.327 | |
39 | 706.44 | |
40 | 724.554 | 35/23, 41/27 |
41 | 742.668 | 43/28 |
42 | 760.782 | 31/20, 45/29 |
43 | 778.896 | |
44 | 797.01 | 19/12, 46/29 |
45 | 815.124 | |
46 | 833.237 | 34/21 |
47 | 851.351 | 18/11 |
48 | 869.465 | 43/26 |
49 | 887.579 | |
50 | 905.693 | |
51 | 923.807 | 29/17, 46/27 |
52 | 941.921 | 31/18 |
53 | 960.034 | |
54 | 978.148 | |
55 | 996.262 | |
56 | 1014.376 | |
57 | 1032.49 | |
58 | 1050.604 | 11/6 |
59 | 1068.718 | |
60 | 1086.831 | |
61 | 1104.945 | 36/19 |
62 | 1123.059 | |
63 | 1141.173 | 29/15 |
64 | 1159.287 | 41/21, 43/22 |
65 | 1177.401 | |
66 | 1195.515 | |
67 | 1213.628 | |
68 | 1231.742 | |
69 | 1249.856 | 35/17 |
70 | 1267.97 | |
71 | 1286.084 | 21/10 |
72 | 1304.198 | |
73 | 1322.312 | |
74 | 1340.425 | 13/6 |
75 | 1358.539 | 46/21 |
76 | 1376.653 | 31/14 |
77 | 1394.767 | |
78 | 1412.881 | 43/19 |
79 | 1430.995 | |
80 | 1449.109 | 30/13 |
81 | 1467.222 | 7/3 |
82 | 1485.336 | 33/14 |
83 | 1503.45 | 31/13 |
84 | 1521.564 | |
85 | 1539.678 | |
86 | 1557.792 | |
87 | 1575.906 | |
88 | 1594.019 | |
89 | 1612.133 | 33/13 |
90 | 1630.247 | |
91 | 1648.361 | |
92 | 1666.475 | 34/13 |
93 | 1684.589 | 37/14, 45/17 |
94 | 1702.703 | |
95 | 1720.816 | 27/10 |
96 | 1738.93 | 30/11, 41/15 |
97 | 1757.044 | |
98 | 1775.158 | 39/14 |
99 | 1793.272 | 31/11 |
100 | 1811.386 | 37/13 |
101 | 1829.5 | |
102 | 1847.613 | |
103 | 1865.727 | |
104 | 1883.841 | |
105 | 1901.955 | 3/1 |
Harmonics
Harmonic | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | -4.49 | +0.00 | -8.97 | +3.22 | -4.49 | +0.35 | +4.66 | +0.00 | -1.27 | -3.24 | -8.97 |
Relative (%) | -24.8 | +0.0 | -49.5 | +17.8 | -24.8 | +1.9 | +25.7 | +0.0 | -7.0 | -17.9 | -49.5 | |
Steps (reduced) |
66 (66) |
105 (0) |
132 (27) |
154 (49) |
171 (66) |
186 (81) |
199 (94) |
210 (0) |
220 (10) |
229 (19) |
237 (27) |
Harmonic | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | -2.63 | -4.13 | +3.22 | +0.17 | +3.90 | -4.49 | -7.52 | -5.75 | +0.35 | -7.73 | +5.88 |
Relative (%) | -14.5 | -22.8 | +17.8 | +1.0 | +21.5 | -24.8 | -41.5 | -31.7 | +1.9 | -42.7 | +32.5 | |
Steps (reduced) |
245 (35) |
252 (42) |
259 (49) |
265 (55) |
271 (61) |
276 (66) |
281 (71) |
286 (76) |
291 (81) |
295 (85) |
300 (90) |