35edt

From Xenharmonic Wiki
Jump to navigation Jump to search
← 34edt35edt36edt →
Prime factorization 5 × 7
Step size 54.3416¢ 
Octave 22\35edt (1195.51¢)
Consistency limit 11
Distinct consistency limit 7

Division of the third harmonic into 35 equal parts (35edt) is related to 22 edo, but with the 3/1 rather than the 2/1 being just. The octave is about 4.4854 cents compressed and the step size is about 54.3416 cents. It is consistent to the 12-integer-limit.

Harmonics

Approximation of harmonics in 35edt
Harmonic 2 3 4 5 6 7 8 9 10 11 12
Error Absolute (¢) -4.5 +0.0 -9.0 -14.9 -4.5 +0.4 -13.5 +0.0 -19.4 -21.4 -9.0
Relative (%) -8.3 +0.0 -16.5 -27.4 -8.3 +0.6 -24.8 +0.0 -35.7 -39.3 -16.5
Steps
(reduced)
22
(22)
35
(0)
44
(9)
51
(16)
57
(22)
62
(27)
66
(31)
70
(0)
73
(3)
76
(6)
79
(9)

Intervals

degree cents value hekts corresponding
JI intervals
comments
0 exact 1/1
1 54.3416 37.1429 33/32, 32/31
2 108.6831 74.2857 33/31
3 163.0247 111.4286 11/10
4 217.3663 148.5714 17/15
5 271.7079 185.7143 7/6
6 326.0494 222.8571 pseudo-6/5
7 380.391 260 81/65 pseudo-5/4
8 434.7326 297.1429 9/7
9 489.0741 334.2857 69/52
10 543.4157 371.4286 26/19
11 597.7573 408.5714 24/17
12 652.0989 445.7143 35/24
13 706.4404 482.8571 pseudo-3/2
14 760.782 520 45/29
15 815.1236 557.1429 8/5
16 869.4651 594.2857 38/23, 81/49
17 923.8067 631.4286 46/27
18 978.1483 668.5714 81/46
19 1032.4899 705.7143 49/27, 69/38
20 1086.8314 742.8571 15/8
21 1141.173 780 29/15
22 1195.5146 817.1429 pseudo-octave
23 1249.8561 854.2857 72/35
24 1304.1977 891.4286 17/8
25 1358.5393 928.5714 57/26
26 1412.8809 965.7143 52/23
27 1467.2224 1002.8571 7/3
28 1521.564 1040 65/27 pseudo-12/5
29 1575.9056 1077.1429 pseudo-5/2
30 1630.2471 1114.2857 18/7
31 1684.5887 1151.4286 45/17
32 1738.9303 1188.5714 03/11
33 1793.2719 1225.7143 31/11
34 1847.6134 1262.8571 32/11, 93/32
35 1901.955 1300 exact 3/1 just perfect fifth plus an octave