35edt
Jump to navigation
Jump to search
Prime factorization
5 × 7
Step size
54.3416¢
Octave
22\35edt (1195.51¢)
Consistency limit
11
Distinct consistency limit
7
← 34edt | 35edt | 36edt → |
Division of the third harmonic into 35 equal parts (35edt) is related to 22 edo, but with the 3/1 rather than the 2/1 being just. The octave is about 4.4854 cents compressed and the step size is about 54.3416 cents. It is consistent to the 12-integer-limit.
Harmonics
Harmonic | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | -4.5 | +0.0 | -9.0 | -14.9 | -4.5 | +0.4 | -13.5 | +0.0 | -19.4 | -21.4 | -9.0 |
Relative (%) | -8.3 | +0.0 | -16.5 | -27.4 | -8.3 | +0.6 | -24.8 | +0.0 | -35.7 | -39.3 | -16.5 | |
Steps (reduced) |
22 (22) |
35 (0) |
44 (9) |
51 (16) |
57 (22) |
62 (27) |
66 (31) |
70 (0) |
73 (3) |
76 (6) |
79 (9) |
Harmonic | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | +15.5 | -4.1 | -14.9 | -17.9 | -14.2 | -4.5 | +10.6 | -23.9 | +0.4 | -25.8 | +5.9 |
Relative (%) | +28.5 | -7.6 | -27.4 | -33.0 | -26.2 | -8.3 | +19.5 | -43.9 | +0.6 | -47.6 | +10.8 | |
Steps (reduced) |
82 (12) |
84 (14) |
86 (16) |
88 (18) |
90 (20) |
92 (22) |
94 (24) |
95 (25) |
97 (27) |
98 (28) |
100 (30) |
Intervals
degree | cents value | hekts | corresponding JI intervals |
comments |
---|---|---|---|---|
0 | exact 1/1 | |||
1 | 54.3416 | 37.1429 | 33/32, 32/31 | |
2 | 108.6831 | 74.2857 | 33/31 | |
3 | 163.0247 | 111.4286 | 11/10 | |
4 | 217.3663 | 148.5714 | 17/15 | |
5 | 271.7079 | 185.7143 | 7/6 | |
6 | 326.0494 | 222.8571 | pseudo-6/5 | |
7 | 380.391 | 260 | 81/65 | pseudo-5/4 |
8 | 434.7326 | 297.1429 | 9/7 | |
9 | 489.0741 | 334.2857 | 69/52 | |
10 | 543.4157 | 371.4286 | 26/19 | |
11 | 597.7573 | 408.5714 | 24/17 | |
12 | 652.0989 | 445.7143 | 35/24 | |
13 | 706.4404 | 482.8571 | pseudo-3/2 | |
14 | 760.782 | 520 | 45/29 | |
15 | 815.1236 | 557.1429 | 8/5 | |
16 | 869.4651 | 594.2857 | 38/23, 81/49 | |
17 | 923.8067 | 631.4286 | 46/27 | |
18 | 978.1483 | 668.5714 | 81/46 | |
19 | 1032.4899 | 705.7143 | 49/27, 69/38 | |
20 | 1086.8314 | 742.8571 | 15/8 | |
21 | 1141.173 | 780 | 29/15 | |
22 | 1195.5146 | 817.1429 | pseudo-octave | |
23 | 1249.8561 | 854.2857 | 72/35 | |
24 | 1304.1977 | 891.4286 | 17/8 | |
25 | 1358.5393 | 928.5714 | 57/26 | |
26 | 1412.8809 | 965.7143 | 52/23 | |
27 | 1467.2224 | 1002.8571 | 7/3 | |
28 | 1521.564 | 1040 | 65/27 | pseudo-12/5 |
29 | 1575.9056 | 1077.1429 | pseudo-5/2 | |
30 | 1630.2471 | 1114.2857 | 18/7 | |
31 | 1684.5887 | 1151.4286 | 45/17 | |
32 | 1738.9303 | 1188.5714 | 03/11 | |
33 | 1793.2719 | 1225.7143 | 31/11 | |
34 | 1847.6134 | 1262.8571 | 32/11, 93/32 | |
35 | 1901.955 | 1300 | exact 3/1 | just perfect fifth plus an octave |
This page is a stub. You can help the Xenharmonic Wiki by expanding it. |