# 35edt

 ← 34edt 35edt 36edt →
Prime factorization 5 × 7
Step size 54.3416¢
Octave 22\35edt (1195.51¢)
Consistency limit 11
Distinct consistency limit 7

Division of the third harmonic into 35 equal parts (35edt) is related to 22 edo, but with the 3/1 rather than the 2/1 being just. The octave is about 4.4854 cents compressed and the step size is about 54.3416 cents. It is consistent to the 12-integer-limit.

## Harmonics

Approximation of harmonics in 35edt
Harmonic 2 3 4 5 6 7 8 9 10 11 12
Error Absolute (¢) -4.5 +0.0 -9.0 -14.9 -4.5 +0.4 -13.5 +0.0 -19.4 -21.4 -9.0
Relative (%) -8.3 +0.0 -16.5 -27.4 -8.3 +0.6 -24.8 +0.0 -35.7 -39.3 -16.5
Steps
(reduced)
22
(22)
35
(0)
44
(9)
51
(16)
57
(22)
62
(27)
66
(31)
70
(0)
73
(3)
76
(6)
79
(9)

## Intervals

degree cents value hekts corresponding
JI intervals
0 exact 1/1
1 54.3416 37.1429 33/32, 32/31
2 108.6831 74.2857 33/31
3 163.0247 111.4286 11/10
4 217.3663 148.5714 17/15
5 271.7079 185.7143 7/6
6 326.0494 222.8571 pseudo-6/5
7 380.391 260 81/65 pseudo-5/4
8 434.7326 297.1429 9/7
9 489.0741 334.2857 69/52
10 543.4157 371.4286 26/19
11 597.7573 408.5714 24/17
12 652.0989 445.7143 35/24
13 706.4404 482.8571 pseudo-3/2
14 760.782 520 45/29
15 815.1236 557.1429 8/5
16 869.4651 594.2857 38/23, 81/49
17 923.8067 631.4286 46/27
18 978.1483 668.5714 81/46
19 1032.4899 705.7143 49/27, 69/38
20 1086.8314 742.8571 15/8
21 1141.173 780 29/15
22 1195.5146 817.1429 pseudo-octave
23 1249.8561 854.2857 72/35
24 1304.1977 891.4286 17/8
25 1358.5393 928.5714 57/26
26 1412.8809 965.7143 52/23
27 1467.2224 1002.8571 7/3
28 1521.564 1040 65/27 pseudo-12/5
29 1575.9056 1077.1429 pseudo-5/2
30 1630.2471 1114.2857 18/7
31 1684.5887 1151.4286 45/17
32 1738.9303 1188.5714 03/11
33 1793.2719 1225.7143 31/11
34 1847.6134 1262.8571 32/11, 93/32
35 1901.955 1300 exact 3/1 just perfect fifth plus an octave