36edt

From Xenharmonic Wiki
Jump to navigation Jump to search
← 35edt 36edt 37edt →
Prime factorization 22 × 32
Step size 52.8321¢ 
Octave 23\36edt (1215.14¢)
Consistency limit 2
Distinct consistency limit 2
Special properties

36EDT is the equal division of the third harmonic into 36 parts of 52.8321 cents each, corresponding to 22.7135 edo.

The patent val has a generally sharp tendency for harmonics up to 18, with the exception for 13. It tempers out 16875/16807 and 413343/390625 in the 7-limit; 891/875, 3087/3025, and 6075/5929 in the 11-limit; 169/165, 351/343, 637/625, and 729/715 in the 13-limit; 189/187, 429/425, 459/455, 833/825, and 845/833 in the 17-limit (no-twos subgroup).

One step of 36edt is close to the TE tuning step of the quartkeenlig temperament.

Intervals

Steps Cents Approximate ratios
0 0 1/1
1 52.8
2 105.7 18/17
3 158.5 11/10, 12/11, 23/21
4 211.3 17/15, 26/23
5 264.2 7/6
6 317 6/5
7 369.8 21/17, 26/21
8 422.7 14/11, 23/18
9 475.5
10 528.3 23/17
11 581.2 7/5
12 634 13/9
13 686.8
14 739.6 23/15, 26/17, 29/19
15 792.5
16 845.3 18/11
17 898.1
18 951 26/15
19 1003.8 25/14
20 1056.6 11/6
21 1109.5
22 1162.3
23 1215.1
24 1268 25/12, 27/13
25 1320.8 15/7
26 1373.6
27 1426.5 25/11
28 1479.3
29 1532.1 17/7
30 1585 5/2
31 1637.8 18/7
32 1690.6
33 1743.5 11/4
34 1796.3 17/6
35 1849.1
36 1902 3/1

Harmonics

Approximation of harmonics in 36edt
Harmonic 2 3 4 5 6 7 8 9 10 11 12
Error Absolute (¢) +15.1 +0.0 -22.6 +13.8 +15.1 +12.4 -7.4 +0.0 -23.9 +22.4 -22.6
Relative (%) +28.7 +0.0 -42.7 +26.1 +28.7 +23.5 -14.0 +0.0 -45.3 +42.4 -42.7
Steps
(reduced)
23
(23)
36
(0)
45
(9)
53
(17)
59
(23)
64
(28)
68
(32)
72
(0)
75
(3)
79
(7)
81
(9)
Approximation of harmonics in 36edt
Harmonic 13 14 15 16 17 18 19 20 21 22 23
Error Absolute (¢) -2.6 -25.3 +13.8 +7.7 +8.4 +15.1 -25.6 -8.8 +12.4 -15.3 +13.4
Relative (%) -5.0 -47.8 +26.1 +14.6 +16.0 +28.7 -48.5 -16.6 +23.5 -28.9 +25.4
Steps
(reduced)
84
(12)
86
(14)
89
(17)
91
(19)
93
(21)
95
(23)
96
(24)
98
(26)
100
(28)
101
(29)
103
(31)